Data protection and confidentiality have become a serious concern in today’s world. Their security is guaranteed by cryptographic protocols, which heavily rely on random numbers as a measure against predictability. Classically, randomness is generated via complex but deterministic algorithms, which are vulnerable to attacks. Quantum Random Number Generators (QRNGs) have emerged as a promising solution, as they provide true random numbers based on the intrinsic non-deterministic nature of quantum mechanics. However, critical challenges for QRNGs are the certification and quantification of their genuine randomness, especially in the presence of untrusted devices, and their compactness for systematic deployment. In this feasibility study, to face these challenges, we propose to use a silicon-photonic platform, leveraging on the concept of quantum contextuality for a semi-device independent generator. In particular, we use Klyachko-Can-Binicioglu-Shumovsky (KCBS) inequality to assess a fundamental property of quantum measurements: that their outcomes depend on the specific measurement context.
Quantum key distribution (QKD) is the first commercial application of the second quantum revolution. Although QKD systems have already been developed and implemented all around the world, some open challenges are limiting the overall deployment of this technology (limited key rate, limited link distance, etc.). By improving the current QKD protocols, it is possible to increase the final secret key generation rate. In this work, we compare 1-decoy with 2-decoy methods in BB84 protocol over an underwater optical fiber link connecting Malta to Italy, showing that 2-decoy can achieve more than twice the key rate of 1-decoy method.
Quantum key distribution (QKD) is one of the most mature among the quantum technologies that allows two remote users to generate secret keys with unconditional security. To increase its adoption, simple, low-cost, and robust systems are necessary, together with demonstrations in real environments. Here, we present a QKD field-trial over optical fibers deployed in the city center of Padua, Italy. Our system exploits two key technologies developed by our group: a low-error, self-stabilized polarization encoder, called iPOGNAC, and a novel synchronization technique, called Qubit4Sync, which allows us to minimize the experimental complexity of our system.
The future global-scale quantum communication network will require free-space and satellite links able to work in daylight conditions and compatible with the telecom fiber infrastructure. Here we present a full prototype for daylight quantum key distribution at 1550 nm exploiting an integrated silicon-photonics chip as state encoder. We tested our prototype in the urban area of Padua (Italy) over a 145m-long free-space link, obtaining a quantum bit error rate around 0.5% and an averaged secret key rate of 30 kbps. The developed chip represents a cost-effective solution for portable free-space transmitters and a promising resource for future satellite missions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.