A new method of FOV quality test of the anti ion feedback microchannel plate was introduced, Ultraviolet Photoelectric Method, and the principle and the structure of the device were given. The test principle and device structure are given. The problems in the testing, including the mutual relationship between the UV transmittance and the quantum efficiency of the Au cathode, and the influence of the photoelectrons on the field of view caused by the UV-excited MCP were discussed. The advantages of the UV photoelectron method in the field defect detection were compared. Which provided a basis for the application of Ultraviolet Photoelectric Method and proves the research direction.
Ion barrier film (IBF) on the input side surface of Micro-channel Plate (MCP ) has a dual role in the high electron transmittance and high ionic blocking rate, and the quality of the film is very strict, so to choose a good coating way to meet the application of IBF-MCP in the third image intensifier is very important. Ion beam sputtering deposition (IBSD) technology is a relatively mature coating technology which can obtain a dense strong adhesion and smooth, high-quality film. This paper is carried out from the quality analysis on surface morphology, crystal structure and coating quality and comparison with qualified film to determine a better way to prepare IBF on the input side surface of MCP.
KEYWORDS: Signal to noise ratio, Microchannel plates, Electrons, Ions, Image intensifiers, Interference (communication), Signal processing, Computing systems, Telecommunications, Power supplies
The noise factor, which is the main factor affecting the noise performance of image intensifier and can accurately reflect the noise characteristics of the micro-channel plate(MCP), is the ratio of the input signal to noise ratio (SNR) and the output SNR. According to definition of noise factor of micro channel plate, noise mechanism and test principle, noise factor of filmed MCP test system is established in order to study the technical way to reduce noise factor of MCP. Because the input surface of the MCP is covered with ion barrier film to block the feedback ions, which have a great impact on the noise factor of the MCP. Hence, noise factor of filmed MCP and un-filmed MCP is measured respectively, and noise factors with different materials and different filmed thickness are measured too. Relationships between noise factor and filmed thickness, noise factor and output SNR of image intensifier have been obtained. That is valuable to reduce the noise of filmed MCP.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.