Vision-based measurement methods were used to measure bubble sizes in this sonoluminescence experiment. Bubble imaging was accomplished by placing the bubble between a bright light source and a microscope-CCD
camera system. A collimated light-emitting diode was operated in a pulsed mode with an adjustable time delay with respect to the piezo-electric transducer drive signal. The light-emitting diode produced a bubble shadowgraph consisting of a multiple exposure made by numerous light pulses imaged onto a charge-couple device camera. Each image was transferred from the camera to a computer-controlled machine vision system via a frame grabber. The frame grabber was equipped with on-board memory to accommodate sequential image buffering while images were transferred to the host processor and analyzed. This configuration allowed the host computer to perform diameter
measurements, centroid position measurements and shape estimation in "real-time" as the next image was being acquired. Bubble size measurement accuracy with an uncertainty of 3 microns was achieved using standard lenses and machine vision algorithms. Bubble centroid position accuracy was also within the 3 micron tolerance of the
vision system. This uncertainty estimation accounted for the optical spatial resolution, digitization errors and the edge detection algorithm accuracy. The vision algorithms include camera calibration, thresholding, edge detection, edge position determination, distance between two edges computations and centroid position computations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.