The aim of this paper is the definition of a model for the degradation of an AlGaN-based ultraviolet (UV) Light Emitting Diode (LED) with a nominal wavelength of 285 nm (UV-C). These devices are widely used in disinfection, sterilization, water purification, medical devices, in plant lighting and as insect traps; moreover, UV antiviral treatments are being developed recently, under the push of the current COVID-19 emergency. We analyzed the behavior of the devices during a constant current stress at the current of 250 mA, through electrical (I-V), optical (L-I) and spectral (PSD) measurements and steady state photocapacitance (SSPC) analysis. By investigating the optical measurements, we found out the presence of two different degradation mechanisms, one before 1000 min of stress and one after 1000 min of stress. We ascribed the first one to a decrease in the injection efficiency and we modeled it with a system of three differential rate equations to describe the dynamics of the de-hydrogenation of gallium vacancies, that lead to a defects generation. On the other hand, the second degradation mechanism is well correlated to the generation of midgap defects (Ec-2.15 eV), as detected from the SSPC analysis, that indicates the generation of non-radiative centers induced by the stress.
AlGaN-based UltraViolet Light Emitting Diodes (UV LEDs) are promising devices for replacing the conventional UV lamps, which contain toxic substances like mercury, in order to have smaller devices, lower operating voltage and the possibility of tuning the emission wavelength by changing the Al and Ga content in the alloy. However, UV-LEDs may suffer from a relatively fast degradation of electrical and optical characteristics, that can be due to the generation of defects that increase the Shockley-Read-Hall (SRH) recombination components. The aim of this paper is to study the behavior of UV-B LEDs submitted to a constant current stress, through electrical, optical and spectral characterization, and capacitance deep-level transient spectroscopy (C-DLTS). The results of this analysis demonstrate that UV-B LEDs show a decrease in the driving voltage, probably correlated with the increased activation of the Mg dopant, and an increase in subthreshold forward current, ascribed to the generation of mid-gap defects caused by the stress. We also found a strong optical degradation at low current levels, that indicates the increase in SRH recombination, probably due to the increased density of mid-gap defects. To investigate on the origin of the defects, we carried out C-DLTS measurements; the results indicate the presence of Mg-related defects and/or intrinsic defects related to the GaN growth. Moreover, after stress we notice the appearance of a peak that is strictly related to the increase of mid-gap defects generated during the stress.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.