We present the initial laboratory test results of the adaptive optics (AO) subassembly for the Low-Cost Optical Terminal (LCOT), a flexible communications ground terminal developed by Goddard Space Flight Center. LCOT will receive first light in 2023 testing. This terminal includes a 700mm commercial telescope, 1550nm receive instruments, and uplink transmit systems. Demodulating coherent formats requires AO to correct turbulence effects and allow coupling into single-mode fiber. General Atomics delivered the system to Goddard in September 2021, where engineers have evaluated performance. We describe laboratory testing, turbulence phase plate design, results, and AO field testing plans when installed on LCOT.
This paper provides the status of ongoing work at NASA-Goddard Space Flight Center (GSFC) to build a low-cost flexible ground terminal for optical communication. For laser communication to be cost-effective for future missions, a global network of flexible optical terminals must be put in place. There is a need for a single ground terminal design capable of supporting multiple missions ranging from LEO to lunar distances. NASA’s Low-Cost Optical Terminal (LCOT) has a single modular design that can be quickly reconfigured to support different laser communications missions. The LCOT prototype uses a 70cm commercially available telescope designed with optical and quantum communications in mind. This telescope is currently being integrated with a state-of-the-art adaptive optics system, and novel high-power laser amplifier demonstrate its utility as an optical communications receiver by receiving a downlink from the recently launched Laser Communication Relay Demonstration (LCRD). LCOT uses commercially available components wherever possible, and where commercial options are not available, the LCOT team works with vendors to create commercial options. This paper discusses the development progress for the blueprint of NASA’s future global ground terminal network.
NASA’s Artemis II mission includes an optical communication payload, affectionately known on board as “OpCom,” which is part of NASA’s Orion Artemis II Optical Communications (O2O) demonstration. We describe the OpCom system architecture and operations concept.
We present the status of ongoing work at NASA-Goddard Space Flight Center (GSFC) to build a low-cost flexible ground terminal for optical communication. Previous laser communication missions at NASA have been supported by one-of-akind ground terminals built specifically for each mission. If NASA is to build a global network of optical terminals to enable widespread use of optical communications, then a blueprint for an economical ground terminal able to support a variety of missions is needed. With this goal in mind, NASA is constructing a ground terminal in Greenbelt, Maryland to enable testing of new ground terminal technologies from industry to academia.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.