KEYWORDS: 3D optical data storage, Point spread functions, Optical storage, Binary data, 3D image processing, 3D modeling, Imaging systems, Data analysis, Systems modeling, Data storage
We propose a new method to determine dynamically the threshold in volumetric (3D) page-oriented optical data storage (PODS) systems that use an incoherent (non-holographic) imaging format. In these systems, the inter-symbol interference (ISI) and inter-page interference (IPI) that occurs with very high data packing density are two major sources of error during data retrieval. Traditional readout systems based on a fixed binary decision threshold provide poor results. Our variable threshold detection method identifies the amount of interference from three dimensions for each data element (pixel) and adjusts the threshold value based on that information. In simulation results, the variable threshold method exhibits significant improvement over traditional detection methods.
Imaging page-oriented optical data storage, with its high bit packing density and many parallel readout channels, offers a solution for high capacity data storage with fast data transfer rate. As in any data storage system, increasing the packing density increases the effect of inter-symbol interference (ISI) and inter-page interference (IPI). We describe a combination of modulation encoding/decoding and error correction that overcomes this interference allowing high packing density in the presence of noise while maintaining acceptable bit error rate (BER). We also describe an extension of the algorithm to multi-level (grayscale) encoding.
KEYWORDS: Optical storage, Binary data, Data storage, Optical imaging, Point spread functions, Detector arrays, Data processing, 3D modeling, Signal to noise ratio, Signal processing
Higher packing densities in page-oriented data storage are achieved by reducing pixel pitch and inter-page spacing. We present iterative detection algorithms that combat inter-page interference.
KEYWORDS: 3D optical data storage, Optical storage, 3D image processing, Point spread functions, Data storage, 3D modeling, Data modeling, Binary data, Matrices, Data analysis
We describe equalization and detection techniques that overcome both inter-page interference (IPI) and intersymbol interference (ISI) in volumetric (3D) page-oriented optical data storage (PODS) systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.