In the recent years, various membrane-type acoustic metamaterials were developed for low frequency sound absorption. However, a membrane absorber usually requires a large back cavity to achieve low frequency sound absorption and on the other hand, in order to guaranty a multiple peaks absorption decorated membrane resonators or membrane with multiple magnetic negative stiffness cell shall be considered. This research proposes a new concept of membrane-type metamaterial which can achieve multiple peaks and broadband absorption at low frequencies. The basic concept behind the design of the elementary cell is associated to the vibro-acoustic behavior of the structure. In fact, the maximum sound absorption is related to the symmetrical mode of the membrane, so playing with the geometry, the mass and the stiffness of the membrane the eigenfrequencies can be tuned easily in the prescribed frequency range. At same time local increase of strain energy around geometrical discontinuity or around discontinuity associated to the material properties may lead a gain in sound absorption. A mono-layer membrane structure is presented where the geometrical shape and material properties distribution in terms of density and stiffness in the elementary cell are optimized in order to manipulate the vibro-acoustic properties and maximize the absorption at required frequencies. To optimize the geometry and the vibro-acoustic properties of the proposed metamaterial, finite element simulation were carried out. The numerical model was then validated using experimental measurements. A preliminary prototype was tested into an impedance tube test ring and the normal sound absorption was measured following the transfer function approach and compared with the numerical results
Sign language is a method of communication for deaf-mute people with articulated gestures and postures of hands and
fingers to represent alphabet letters or complete words. Recognizing gestures is a difficult task, due to intrapersonal and
interpersonal variations in performing them. This paper investigates the use of Spiral Passive Electromagnetic Sensor
(SPES) as a motion recognition tool. An instrumented glove integrated with wearable multi-SPES sensors was developed
to encode data and provide a unique response for each hand gesture. The device can be used for recognition of gestures;
motion control and well-defined gesture sets such as sign languages. Each specific gesture was associated to a unique
sensor response. The gloves encode data regarding the gesture directly in the frequency spectrum response of the SPES.
The absence of chip or complex electronic circuit make the gloves light and comfortable to wear. Results showed
encouraging data to use SPES in wearable applications.
The coupling between structural support and protection makes biological systems an important source of inspiration for the development of advanced smart composite structures. In particular, some particular material configurations can be implemented into traditional composites in order to improve their impact resistance and the out-of-plane properties, which represents one of the major weakness of commercial carbon fibres reinforced polymers (CFRP) structures. Based on this premise, a three-dimensional twisted arrangement shown in a vast multitude of biological systems (such as the armoured cuticles of Scarabei, the scales of Arapaima Gigas and the smashing club of Odontodactylus Scyllarus) has been replicated to develop an improved structural material characterised by a high level of in-plane isotropy and a higher interfacial strength generated by the smooth stiffness transition between each layer of fibrils. Indeed, due to their intrinsic layered nature, interlaminar stresses are one of the major causes of failure of traditional CFRP and are generated by the mismatch of the elastic properties between plies in a traditional laminate. Since the energy required to open a crack or a delamination between two adjacent plies is due to the difference between their orientations, the gradual angle variation obtained by mimicking the Bouligand Structures could improve energy absorption and the residual properties of carbon laminates when they are subjected to low velocity impact event. Two different bioinspired laminates were manufactured following a double helicoidal approach and a rotational one and were subjected to a complete test campaign including low velocity impact loading and compared to a traditional quasi-isotropic panel. Fractography analysis via X-Ray tomography was used to understand the mechanical behaviour of the different laminates and the residual properties were evaluated via Compression After Impact (CAI) tests. Results confirmed that the biological twisted structures can be replicated into traditional layered composites and are able to enhance the out-of-plane properties without a dangerous degradation of the in-plane properties.
A major goal of structural health monitoring (SHM) is to provide accurate and responsive detection and monitoring of flaws. This research work reports an investigation of SPES sensors for damage detection, investigating different sensor sizes and how they affect the sensor’s signal. A sensor able to monitor structural change that can be remotely interrogated and does not need a power supply is presented in this work. The SPES-sensor presents the great advantage of monitoring conductive and non-conductive structures such as fiberglass-reinforced composites (FRC) and carbon fiber-reinforced polymers (CFRP). Any phenomena that affect the magnetic field of the SPES can be detected and monitored. A study was conducted to investigate the capability of sensor to give information on structural changes, simulated by the presence of an external mass placed in the proximity of sensor. Effect of different positions of the SPES within the sample, and how to extend the area of inspection using multiple sensors was investigated. The sensor was tested embedded in the samples, simulating the structural change on both sides of the sample. In both configurations the sensor described herein demonstrated a great potential to monitor structural changes.
The objective of this work was to develop a wireless Spiral Passive Electromagnetic Sensor (SPES) to monitor the complex permittivity of a surrounding medium. The sensor is a self-resonating planar pattern of electrically conductive material. Investigation were conducted to demonstrate the capability of the SPES to monitor humidity and temperature gradients, and acting as an ice protection tool. An oscillating signal is used to interrogate remotely the sensor with a single loop antenna or wiring it directly to a spectrum analyser and monitoring the backscattering signal. The excited sensor responds with its own resonant frequency, amplitude and bandwidth that can be correlated to physical quantities to be monitored. Our studies showed the capability of the sensor to monitor temperature and humidity changes in composite materials and uniformly produce induction heating when the conductive path is activated by an external electric power supply that can be used for deicing of aircraft structures.
1. Detection of visible crack, delamination etc. in composite structures can be fulfilled by several techniques. However, the problem is of greater complexity in the case of nonvisible defects such as barely visible impact damage and microcracks. The objective of this research work was to create and validate a low cost smart-sensor for NDT and structural health monitoring (SHM) to be used for complex geometries. The smart-sensor presents a dual function, i.e. it determines the presence of delamination and cracks within the cross-section but it also provides information on surface damages due to fatigue or impacts. In the latter case the damage could induce the breakage of the sensor that could still work with a different resonant frequency. The sensor utilizes a passive wireless resonant telemetry scheme based on an inductor capacitor (LC). The use of a passive system eliminates the need for onboard power and exposed interconnects, increasing the life of the device and the reliability due to the continuous operation even in case of damage results from the sensor. The sensor design, the signal processing and the experimental setup that validate the remote interrogation of the antenna sensor are presented. Two different designs were investigated, one for conductive surface and one for nonconductive surface (fiberglass-composite).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.