A complementary coplanar interdigital electrode photoconductive switch based on vanadium-nitrogen doped 4H-SiC bulk material was developed. The test results show that the combination of vanadium doping and coplanar interdigital electrode structure, the voltage capability of 4H-SiC photoconductive switch is significantly improved and the conductive resistance of 4H-SiC photoconductive switch under low light intensity is reduced. The bias voltage of 4H-SiC photoconductive switch is 10kV. The conductive resistance of 4H-SiC photoconductive switch excited by 0.4mJ 532nm laser is 50Ω. In a 50 Ω microwave system, the peak power output by the load is 0.5MW. By continuously increasing the injected laser energy to 2mj, the on resistance can be reduced to 6 Ω. The results show that the developed vanadium-nitrogen doped 4H-SiC photoconductive switch has the characteristics of stable output waveform, small jitter and high power. The developed vanadium-nitrogen doped 4H-SiC photoconductive switch has certain application value.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.