Amplifying ps-laser radiation to high pulse-energies as well as a high average output power is a challenging task. In the past it was shown that thin-disk multipass amplifiers can achieve excellent properties for ultrashort laser pulses at over 1 kW of average power. Furthermore, systems combining multipass and regenerative thindisk amplifiers achieved 700 mJ of pulse energy at a repetition rate of 1000 Hz. These systems reaching such excellent properties are complex, extensive and typically need dozens of mirror-optics and the corresponding space associated with those. With the introduction of our monolithic wedged thin-disk (WTD) concept we were able to demonstrate small signal laser amplification of up to 10 (+10 dB) for cw-systems with a drastically reduced amount of mirror optics as well as space needed. By adding a redirecting mirror to introduce two multipasses in the WTD we were able to amplify a 2 ps-laser source with a small signal gain of up to 55 (+17 dB) and at 20W seed power by a factor of 5 (+7 dB) reaching up to 100W of output power.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.