In this work, we propose a novel GCN based Residual connected (GCN-RC) network to improve the quality of Fluorescence molecular tomography (FMT) morphological reconstruction. Instead of using a simplified linear model of photon propagation for FMT reconstruction, the method can directly construct a nonlinear mapping relationship between the surface photon density and internal fluorescent source. In order to validate the reconstruction performance of GCN-RC, we performed numerical simulation experiments and in vivo experiments based on tumor-bearing mice. Both numerical simulated and in vivo experimental results demonstrated that GCN-RC achieved improved reconstruction in terms of both source localization and morphology recovery.
Hepatocellular carcinoma (HCC) is one of the most important leading causes of cancer-related deaths worldwide. In this study, we evaluated the efficacy of sorafenib on hepatocellular carcinoma through bioluminescence tomography (BLT) based on Micro-CT/BLT multi-modal system. Initially, the human hepatocellular carcinoma cell line HepG2-Red-FLuc, which was transfected with luciferase gene, was cultured. And then, the orthotopic liver tumor mouse model was established on 4~5 weeks old athymic male Balb/c nude mice by inoculating the HepG2-Red-FLuc cell suspension into the liver lobe under isoflurane anesthesia. 15~20 days after tumor cells implantation, the mice were divided into two groups including the sorafenib treatment group and the control group. The mice in the treatment group were treated with sorafenib with dosage of 62 mg/kg/day by oral gavage for continuous 14 days, and the mice in the control group were treated with sterile water at equal volume. The tumor growth and drug treatment efficacy were dynamically monitored through BLT. The results in this study showed that the growth of liver cancer can be dynamically monitored from very early stage, and also the sorafenib treatment efficacy can be reliably and objectively assessed using BLT imaging method. Our experimental result demonstrated sorafenib can inhibit the tumor growth effectively. BLT enabled the non-invasive and reliable assessment of anti-neoplastic drug efficacy on liver cancer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.