KEYWORDS: System on a chip, Virtual colonoscopy, Solar cells, Telecommunications, Computer programming, Prototyping, Sensors, Clocks, Control systems, Optical communications
This paper presents a System On Chip (SoC) designed specifically to control a mm3- sized microrobot called I-SWARM. The robot is intended to be part of a colony of 1000 I-SWARM robots for studying swarm behavior in real time and in a real swarm. The SoC offers a well-suited hardware platform to run multi-agent systems software. It is composed of an 8051 microcontroller with 2 kB of data memory and 8 kB of program memory. The processor is provided with specific hardware modules for controlling the locomotion unit, the communications and the vibrating contact sensor of the robot. These modules perform basic tasks as movements or communications so the 8051 can focus on processing data and taking decisions. With these capabilities, the robot is able to avoiding collisions with other members of the swarm, performing cooperative tasks, sharing information and executing specialized tasks. The SoC has been fabricated with a 0.13 &mgr;m ultra low power CMOS process of STMicroelectronics and consumes less than 1 mW.
Nowadays Atomic Force Microscopy is one of the most extended techniques performed in biological measurements. Due to the higher flexibility in respect to conventional equipments, a novel approach in this field is the use of a microrobot equipped with an AFM tool. In this paper it is presented an integrated controller for an AFM tool assembled in a 1 cm3 wireless microrobot. The AFM tool is mounted on the tip of a rotational piezoelectric actuator arm. It consists on a XYZ positioning scanner, based in 4 piezoelectric stacked actuators, and an AFM piezoresistance probe. Two types of AFM working modes are implemented in the controller, i.e., nanoidentation and AFM scanning. Correction of the mismatch of the piezoactuators composing the arm is possible. A programmable PID control is included in the controller in order to get more flexibility in terms of scanning speed and resolution. An IrDA protocol is used to program the parameters of the AFM tool controller and the positioning of the robot in the working area. Then the values of the nanoindentation or of the scanning can be read through the IrDA interface without any other external action.
Due to the strong power and area restrictions, the controller has been implemented in specific logic in a 0.35um technology. The design has been done using functional specifications with high level tools and RTL synthesis. The AFM scanner can be positioned with a resolution of 10 nm and scan areas up to 1 μm2 with an expected vertical resolution of 1nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.