It’s commonly reported that a difference exists between directly measured reticle feature dimensions and those produced in the final lithographic image. Quantifying this mask error function (MEF) and the sources of the perturbation has been the topic of many papers of the past several years. Past studies have been content to evaluate these functions by statistical averaging thereby neglecting the potential influence of process and exposure contributions.
The material presented here represents the findings of an extensive study of reticle-process interactions. Phase I of the evaluation consisted of focus and dose exposures of the reticle and subsequent modeling of the full-profile response. This analysis provided extensive information on the optimum-printed feature profiles while removing the contribution of across-field focus variations.
The reticle was directly characterized using both conventional SEM and a new Nanometrics OCD Scatterometer technique. The full-field modeled response surface of the directly measured feature characteristics are then used to calculate the across-field MEF and provide an improved estimate of the true response of the feature to exposure. Phase II of the analysis turns its attention to characterization of the full-wafer process response. Both the modeled and directly measured reticle surfaces were removed from Scatterometry measured full-wafer exposures. Normal process variations consisting of photoresist and ARC thickness volatility are next used to show the response of the printed feature. Finally a summary of the relative contribution of each process perturbation to the feature profile error budget is discussed.
Optical Critical Dimension (OCD) measurements using Normal-Incidence Spectroscopic Polarized Reflectance and Ellipsometry allows for the separation of transverse electric and transverse magnetic modes of light reflected from an anisotropic sample as found in a periodic grating structure. This can provide the means for determining line widths and analyzing complex profiles for a variety of structures found in mask fabrication. The normal-incidence methodology maintains much of the simplicity in mechanical design found in a standard reflectometer and the additional polarizing element has no effect on the footprint making the system amenable for integration, inline monitoring and advanced process control. The Rigorous Coupled Wave Analysis (RCWA) method provides an exact method for calculating the diffraction of electromagnetic waves by periodic grating structures. We have continued development of OCD technology to critical measurement steps in the photomask fabrication process: After Development Inspection (ADI), After Etch Inspection (AEI) for binary and phase shift masks. Additionally, we have demonstrated the ability of monitoring the mask CD quality with the presence of a protective pellicle. The determination of important critical dimensions in photomasks via optical techniques is appealing for several reasons: the method is non-destructive to photoresist and the sample is not subject to charging effects; the technique is capable of measuring the critical dimensions of grating structures down to approximately 40 nm; finally, minimal facilities are required for installation (no high vacuum, cooling or shielding of electromagnetic fields). Results will be presented showing the capabilities of OCD metrology for ADI, AEI and masks monitoring applications that emphasizes how the technology can be incorporated at many steps in the mask manufacturing process.
Current advanced lithography processes are based on a Critical Dimension (CD) budget of 10nm or less with errors caused by exposure tool, wafer substrate, wafer process, and reticle. As such, allowable CD variation across wafer becomes an important parameter to understand, control and minimize. Three sources of errors have an effect on CD Uniformity (CDU) budget, run-to-run (R2R), wafer-to-wafer (W2W) and intra-wafer. While R2R and W2W components are characterized and compensation conrol techniques were developed to minimize their contribution the intra-wafer component is more or less ignored with the consequence that its sources of errors have not been characterized and no compensation technique is available. In this paper, we propose an approach to analyze intra-wafer CD sources of variations identifying the non-random CDU behavior and connect this with disturbances caused by processing errors described by their wafer spatial coordinates. We defined a process error as disturbance and its effect as a feature response. We study the impact of modeling spatial distribution of a feature response as calculated by diffractive optical CD metrology (scatterometry) and relate it to a programmed process disturbance. Process disturbances are classified in terms of time characteristics that define their spatial distribution. We demonstrated feature response to a disturbance behavior as statistical values as well as spatial profile. We identified that CD response is not sufficient to determine the sources of process disturbance and accordingly added responses from other features, which add to detection of CDU sources of error. The added respsonses came from scatterometry principle based on model difinition of a litho patter described by its shape with characteristic features: bottom CD, resist thickness, sidewall angle and bottom antireflective layer thickness. Our results show that process errors with continuous intra-wafer variation, such as PEB and BARC thickness have larger effects on CDU compared to process errors with discrete intra-wafer behavior, such as dose and defocus. Correlation between multiple feature responses to process disturbance was characterized as spatial covariance between
CD to resist thickness and CD to SWA. Spatial feature covariance enhances capability to infer sources of process disturbance from metrology data.
Optical Critical Dimension (OCD) measurements using Normal-Incidence Spectroscopic Ellipsometry (polarized reflectance) allow for the separation of transverse electric and transverse magnetic modes of light reflected from an anisotropic sample as found in a periodic grating structure. This can provide the means for determining linewidths and analyzing complex profiles for a variety of structures found in mask fabrication. The normal-incidence spectroscopic ellipsometer maintains much of the simplicity in mechanical design found in a standard reflectometer and the additional polarizing element has no effect on the footprint making the system amenable for integration, inline monitoring and advanced process control. The rigourous coupled wave analysis (RCWA) method provides an exact method for calculating the diffraction of electromagnetic waves by periodic grating structures. We have extended OCD technology to critical measurement points in the mask fabrication process: After development inspection (ADI), where OCD evaluates mask writer performance and after etch inspection (AEI) for monitoring and control of etched quartz structures for phase shift applications. The determination of important, critical dimensions via optical techniques is appealing for several reasons: the method is non-destructive to photoresist and the sample is not subject to charging effects; the technique is capable of measuring the critical dimensions of grating structures down to approximately 40 nm; minimal facilities are required for installation (no high vacuum, cooling or shielding of electromagnetic fields); like optical thin film metrology, OCD technology can be integrated into process tools enabling Advanced Process Control (APC) of the etch process. Results will be presented showing the capabilities of OCD metrology for ADI and AEI applications. Comparisons will be made with both CD-SEM and X-SEM and the application to monitoring/controlling the quartz etch process will be discussed.
Ion beam implantation of silicon with hydrogen is a method of producing thin silicon films for the manufacture of silicon on insulator (SOI) wafers. The implanted hydrogen depth profiles are traditionally measured using nuclear reaction analysis (NRA) or secondary ion mass spectrometry (SIMS) which have the disadvantages of requiring specialized equipment and, in the case of SIMS, being a destructive measurement. In the current work, a simplified method of measuring the depth profile of implanted hydrogen ions in silicon has been developed. Using a spectroscopic ellipsometer, optical data are collected from hydrogen implanted silicon wafers in a non-contact and non-destructive manner. The ellipsometric data from 600-980 nm wavelength are then analyzed by modeling the damage as a graded sub-surface layer in the silicon. By fitting this model to the experimental data, values for the depth of the implantation and the width of the implantation distribution can be extracted. This method offers the advantages of being repeatable, fast, and non-destructive, as well as using a piece of metrology equipment readily available in most semiconductor fabs. The method has been tested over a range of implant energies (24-92 keV) and hydrogen doses and shows excellent correlation to traditional NRA measurements for implant depth profile.
In modeling the optical properties of thin films, incorporation of roughness or interfacial layers is often required in the analysis of spectroscopic ellipsometric and spectroscopic reflectance data in order to achieve good agreement between the model and experimental data. The location of the roughness or interfacial layer is usually discernable from the spectroscopic ellipsometric data; however, their location is not always unambiguous from spectroscopic reflectance data. In the current work, we have explored how the spectroscopic determination of the interfacial and surface roughness layers correlates with direct measurements of the surface using atomic force microscopy (AFM). Spectroscopic reflectance and subsequent analysis of several thick films demonstrate the difficulty in placement of a roughness or interfacial layer in the optical model. The samples involved in this study have films deposited on metal substrates and include stainless steel and aluminum. We have used AFM to directly measure the surface roughness in order to improve the optical characterization and model development. As an example, we have examined an 8,000 nm silicon dioxide film on stainless steel. Models with the placement of an interfacial layer between the substrate and film, or placement of a roughness layer at the surface produce fits with nearly equivalent mean squared error values; however, the surface roughness layer is nearly an order of magnitude larger than that of the interfacial layer. Analysis using AFM shows a surface topography consistent with the magnitude of the interfacial roughness layer. In this example, the silicon dioxide layer was too thick for standard spectroscopic ellipsometry and spectroscopic reflectance was used exclusively in the analysis. For several samples with silicon dioxide on an aluminum substrate, an interfacial layer was necessary to produce a good model fit with the experimental data. These films of 500-1,000 nm thickness were analyzed using both spectroscopic ellipsometry and spectroscopic reflectance. The analysis for all films shows good agreement between the interfacial roughnesses calculated using an effective medium approximation (EMA) with AFM measurements, indicating the transfer or correlation of the substrate roughness to the surface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.