The National Radio Astronomy Observatory (NRAO) has engaged the broad scientific and technical communities in the design of a next-generation Very Large Array [1] (ngVLA), a large-scale research infrastructure project under development for the National Science Foundation Astronomical Sciences Division (NSF-AST) through a cooperative agreement with Associated Universities, Inc. The ngVLA is envisaged as an interferometric array with ten times greater sensitivity and spatial resolution than the current VLA and ALMA, operating in the frequency range of 1.2 - 116 GHz. Replacing both the VLA and VLBA, the ngVLA will be an open-skies, transformative, multi-disciplinary scientific instrument opening a new window on the Universe through ultra-sensitive imaging of thermal line and continuum emission down to milliarcsecond-scale resolution, as well as unprecedented broad-band continuum polarimetric imaging of non-thermal processes. The ngVLA will be optimized for observations in the spectral region between the superb performance of ALMA at sub-mm wavelengths, and the future Phase I Square Kilometer Array (SKA-1) at decimeter and longer wavelengths, resulting in a transformational instrument for the entire scientific community. In 2019, the ngVLA project completed the public release of the ngVLA Reference Design [2][3] as the technical and cost basis of the ngVLA Astro2020 Decadal Survey proposal [4]. With a strong endorsement of the facility concept by the Decadal Survey [5] and continued support from the National Science Foundation, the project is preparing for a System Conceptual Design Review in the spring of 2022. This paper provides a technical update, noting technical advancements and changes to the design baseline.
The ngVLA is envisaged as an interferometric array with ten times greater sensitivity and spatial resolution than the current VLA and ALMA, operating in the frequency range of 1.2 – 116 GHz.
In this talk we provide a project status update and overview of the Reference Design. The Reference Design is a low-technical-risk, costed concept that supports the key science goals for the facility, and forms the technical and cost basis of the ngVLA Astro2020 Decadal Survey proposal.
The next-generation Very Large Array (ngVLA) is an astronomical observatory planned to operate at centimeter wavelengths (25 to 0.26 centimeters, corresponding to a frequency range extending from 1.2 GHz to 116 GHz). The observatory will be a synthesis radio telescope constituted of approximately 214 reflector antennas each of 18 meters diameter, operating in a phased or interferometric mode.
We provide an overview of the current system design of the ngVLA. The concepts for major system elements such as the antenna, receiving electronics, and central signal processing are presented. We also describe the major development activities that are presently underway to advance the design.
The Magdalena Ridge Observatory Interferometer has been designed to be a 10 × 1.4 m aperture long-baseline optical/near-infrared interferometer in an equilateral "Y" configuration, and is being deployed west of Socorro, NM on the Magdalena Ridge. Unfortunately, first light for the facility has been delayed due to the current difficult funding regime, but during the past two years we have made substantial progress on many of the key subsystems for the array. The design of all these subsystems is largely complete, and laboratory assembly and testing, and the installation and site acceptance testing of key components on the Ridge are now underway. This paper serves as an overview and update on the facility's present status and changes since 2012, and the plans for future activities and eventual operations of the facilities.
NESSI: the New Mexico Tech Extrasolar Spectroscopic Survey Instrument is a ground-based multi-object
spectrograph that operates in the near-infrared. It will be installed on one of the Nasmyth ports of the
Magdalena Ridge Observatory (MRO) 2.4-meter Telescope. NESSI operates stationary to the telescope
fork so as not to produce differential flexure between internal opto-mechanical components during or
between observations. In this paper we report on NESSI's detailed mechanical and opto-mechanical design,
and the planning for mechanical construction, assembly, integration and verification.
NESSI: the New Mexico Tech Extra(solar)planet Spectroscopic Survey Instrument is a ground-based multi-object
spectrograph that operates in the near-infrared and is being deployed this fall at the Magdalena Ridge Observatory 2.4 m
telescope. When completed later this year, it is expected to be used to characterize the atmospheres of transiting
exoplanets with unprecedented ground-based accuracies down to about K = 9 magnitude. The superior capabilities of
NEESI for this type of work lay, in part, in the design philosophy used for the instrument which is well-focused on the
exoplanet case. We report here on this design philosophy, detail and status of the design and assembly, and preparation
for first light in the fall of 2012.
Most subsystems of the Magdalena Ridge Observatory Interferometer (MROI) have progressed towards
final mechanical design, construction and testing since the last SPIE meeting in San Diego - CA. The first
1.4-meter telescope has successfully passed factory acceptance test, and construction of telescopes #2 and
#3 has started. The beam relay system has been prototyped on site, and full construction is awaiting
funding. A complete 100-meter length delay line system, which includes its laser metrology unit, has been
installed and tested on site, and the first delay line trolley has successfully passed factory acceptance
testing. A fully operational fringe tracker is integrated with a prototyped version of the automated
alignment system for a closed looping fringe tracking experiment. In this paper, we present details of the
final mechanical and opto-mechanical design for these MROI subsystems and report their status on
fabrication, assembly, integration and testing.
The Magdalena Ridge Observatory Interferometer has been designed to be a 10 x 1.4 m aperture long-baseline
optical/near-infrared interferometer in an equilateral "Y" configuration, and is being deployed west of Socorro, NM on
the Magdalena Ridge. Unfortunately, first light for the facility has been delayed due to the current difficult funding
regime, but during the past two years we have made substantial progress on many of the key subsystems for the array.
The design of all these subsystems is largely complete, and laboratory assembly and testing, and the installation of many of its components on the Ridge are now underway. This paper serves as an overview and update on the facility's present status, and the plans for future funding and eventual operations of the facilities.
The fast tip-tilt correction system for the Magdalena Ridge Observatory Interferometer (MROI) is being designed and fabricated by the University of Cambridge. The design of the system is currently at an advanced stage and the performance of its critical subsystems has been verified in the laboratory. The system has been designed to meet a demanding set of specifications including satisfying all performance requirements in ambient temperatures down to -5 °C, maintaining the stability of the tip-tilt fiducial over a 5 °C temperature change without recourse to an optical reference, and a target acquisition mode with a 60” field-of-view. We describe the important technical features of the system, which uses an Andor electron-multiplying CCD camera protected by a thermal enclosure, a transmissive optical system with mounts incorporating passive thermal compensation, and custom control software running under Xenomai real-time Linux. We also report results from laboratory tests that demonstrate (a) the high stability of the custom optic mounts and (b) the low readout and compute latencies that will allow us to achieve a 40 Hz closed-loop bandwidth on bright targets.
The Magdalena Ridge Observatory Interferometer (MROI) has completed its design phase and is currently in the
construction phase. The first telescope will be deployed at the MROI site in 2011. Five different vendors are involved
in the design and fabrication of a unit telescope, and a much larger number for the full observatory.
This paper addresses the steps that the MRO Interferometry project will undertake to integrate subsystems developed by
different parties, through commissioning into an operational optical interferometer.
Finally we present the commissioning plan to bring the interferometer to an operational mode. We have developed
"performance verification milestones" that successively increase the "science readiness" of the interferometer and
transitions to an operational phase.
The Magdalena Ridge Observatory Interferometer is a 10 x 1.4 meter aperture long baseline optical and near-infrared
interferometer being built at 3,200 meters altitude on Magdalena Ridge, west of Socorro, NM. The interferometer layout
is an equilateral "Y" configuration to complement our key science mission, which is centered on imaging faint and
complex astrophysical targets. This paper serves as an overview and update on the status of the observatory and our
progress towards first light and first fringes in 2012.
KEYWORDS: Mirrors, Telescopes, Mechanical engineering, Fourier transforms, Optical benches, Interferometers, Spectrographs, Aluminum, Beam splitters, Simulation of CCA and DLA aggregates
We report on the mechanical design currently performed at the Magdalena Ridge Observatory
Interferometer (MROI) and how the construction, assembly, integration and verification are planned
towards commissioning. Novel features were added to the mechanical design, and high level of automation
and reliability are being devised, which allows the number of reflections to be kept down to a minimum
possible. This includes unit telescope and associated enclosure and transporter, fast tip-tilt system, beam
relay system, delay line system, beam compressor, automated alignment system, beam turning mirror,
switchyard, fringe tracker and vacuum system.
The Magdalena Ridge Observatory Interferometer is a 10-element 1.4 meter aperture optical and near-infrared
interferometer being built at 3,200 meters altitude on Magdalena Ridge, west of Socorro, NM. The
interferometer layout is an equilateral "Y" configuration to complement our key science mission, which is
centered around imaging faint and complex astrophysical targets. This paper serves as an overview and
update on the status of the observatory and our progress towards first light and first fringes in the next few
years.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.