Aiming at the problem of pedestrian targets occlusion and multi-scale error and missed detection in pedestrian detection, a lightweight pedestrian detection algorithm based on improved EA-YOLOv5n is proposed. This method introduces the ECA attention module into the backbone feature extraction network, and learns the channels of pedestrian images by learning Information, improve the accuracy of pedestrian object detection in the case of occlusion, improve the calculation method of Bounding box loss function for the disadvantages of loss function calculation, adopt EIoU Loss and introduce power transformation to obtain higher bounding box regression accuracy. The experimental results show that using the improved model to conduct experiments on the Widerperson dataset reaches 69.6% mAP, which is 2.0% higher than the original algorithm, and the detection speed reaches 65FPS.
In the conventional mechanical bearing fault classification problem, deep learning has been widely used and has achieved very good results. However, in practical engineering, the lack of training data makes it difficult for the model to achieve the desired effect, and the model trained with the same data will also have the problem of insufficient generalization ability. Under the premise of small samples, this paper starts with transfer learning and data enhancement technology, uses quadratic interpolation, Mixup, sliding time window methods, and optimizes the model structure and hyperparameters to achieve the fault diagnosis of different bearings and working conditions a better classification effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.