In a recent paper we have reported on the feasibility of reducing the problem of structural design of a multicomponent
lens system in accordance with a prespecified set of Gaussian characteristics and primary aberration targets to the
relatively simpler problem of determining optimum structures for the component lenses with central aberration targets.
The structural design of the individual components can be suitably tackled by evolutionary algorithm so that one can
obtain globally or quasiglobally optimum solutions for the purpose. Details of the latter part of the approach are
presented in this paper.
Contrary to the usual practice of heuristic selection of glass types for the lens elements of the component, the glass types
for individual lens elements are treated as discrete independent variables to be selected from a set of prespecified list of
actual glasses. We have dealt with the global or quasiglobal synthesis of the individual lens components with the help of
structures of increasing complexity, e.g. singlets, cemented doublets, broken contact doublets, cemented triplets,
photovisual objectives etc. as necessary for the purpose. The total configuration space consists of continuous variables
like shape variable and power distributions, and discrete variables like available glass types. This approach reduces
significantly the chance of overlooking promising and better solutions by carrying out searches in the total configuration
space simultaneously. Some illustrative examples will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.