In this talk, we will discuss recent advances in the science and engineering of organic light-emitting diodes (OLEDs). First, we will focus on materials in which light emission involves the process of thermally activated delayed fluorescence (TADF). In these materials, triplet excited states can convert into optically emissive singlet excited states by reverse intersystem crossing, allowing for nearly 100% internal quantum efficiency. This process can be used to design a new class of materials that are all organic, offering a lower cost alternative to conventional electrophosphorescent materials that contain heavy and expensive elements such as Pt and Ir. We will discuss molecular design strategies and present examples of materials that can be used as emitters or hosts in the emissive layer.
In a second part of this talk, we will review recent progress in fabricating OLEDs on shape memory polymer substrates (SMPs). SMPs are mechanically active, smart materials that can exhibit a significant drop in modulus once an external stimulus such as temperature is applied. In their rubbery state upon heating, the SMP can be easily deformed by external stresses into a temporary geometric configuration that can be retained even after the stress is removed by cooling the SMP to below the glass transition temperature. Reheating the SMP causes strain relaxation within the polymer network and induces recovery of its original shape. We will discuss how these unique mechanical properties can also be extended to a new class of OLEDs.
Organic field-effect transistors (OFETs) have the potential to lead to low-cost flexible displays, wearable electronics, and sensors. While recent efforts have focused greatly on improving the maximum charge mobility that can be achieved in such devices, studies about the stability and reliability of such high performance devices are relatively scarce. In this talk, we will discuss the results of recent studies aimed at improving the stability of OFETs under operation and their shelf lifetime. In particular, we will focus on device architectures where the gate dielectric is engineered to act simultaneously as an environmental barrier layer.
In the past, our group had demonstrated solution-processed top-gate OFETs using TIPS-pentacene and PTAA blends as a semiconductor layer with a bilayer gate dielectric layer of CYTOP/Al2O3, where the oxide layer was fabricated by atomic layer deposition, ALD. Such devices displayed high operational stability with little degradation after 20,000 on/off scan cycles or continuous operation (24 h), and high environmental stability when kept in air for more than 2 years, with unchanged carrier mobility. Using this stable device geometry, simple circuits and sensors operating in aqueous conditions were demonstrated. However, the Al2O3 layer was found to degrade due to corrosion under prolonged exposure in aqueous solutions. In this talk, we will report on the use of a nanolaminate (NL) composed of Al2O3 and HfO2 by ALD to replace the Al2O3 single layer in the bilayer gate dielectric use in top-gate OFETs. Such OFETs were found to operate under harsh condition such as immersion in water at 95 °C.
This work was funded by the Department of Energy (DOE) through the Bay Area Photovoltaics Consortium (BAPVC) under Award Number DE-EE0004946.
We demonstrate top-gate organic field-effect transistors (OFETs) with a bilayer gate dielectric and doped contacts fabricated on shape-memory polymer (SMP) substrates. SMPs exhibit large variations in Young’s modulus dependent on temperature and have the ability to fix two or more geometric configurations when a proper stimulus is applied. These unique properties make SMPs desirable for three-dimensional shape applications of OFETs. The electrical properties of OFETs on SMP substrates are presented and compared to those of OFETs on traditional glass substrates.
We discuss a non-vacuum low-cost reverse stamping method for the realization of circuits based on top-gate organic field-effect transistors (OFETs) with a bi-layer gate dielectric. This method allows for patterning of high-k inorganic dielectric films produced by atomic layer deposition and consequently of the bilayer gate dielectric layers used in our top-gate OFETs. We demonstrate the fabrication and operation of logic inverters and ring oscillators following this approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.