An Fe2+-doped ZnSe saturable absorber mirror (SAM) were fabricated by electron beam evaporation technique. In the Fe2+-doped ZnSe SAM, Fe2+ was doped into the bragg stack, in which Fe2+:ZnSe served as both saturable absorber and high reflection layer. By using the Fe2+-doped ZnSe SAM in the fiber laser, which operating at 2.78 μm, stable Qswitched pulse was obtained and the repetition rate was from 78.79 kHz to 162.32 kHz. The recorded maximum average output of 865 mW was achieved.
A midinfrared (mid-IR) saturable absorber mirror (SAM) was fabricated by coating aluminum film on Fe2+:ZnSe crystal, based on the vacuum evaporation method. By employing the prepared SAM, we demonstrated a high-power passively Q-switched Er3+-doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber laser at 2.8 μm. The highest output power in excess of 1.01 W was obtained with a pulse energy of 11.37 μJ and pulse duration of 0.73 μs, corresponding to a repetition rate of 88.84 kHz. To the best of our knowledge, these values represent the highest output power/pulse energy from a passively Q-switched ZBLAN fiber laser around 2.8 μm. Our results demonstrate that Fe2+:ZnSe SAM is a promising device for high-power/high-energy pulse generation in compact mid-IR fiber lasers.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.