EB (electron beam) resist is widely used for the EUV (extreme ultraviolet) mask production. Tighter pitch size and smaller pattern features are required on EUV mask for the next generation EUV patterning. One of the most critical issues for EB lithography process is the stochastic issue which is induced by low density of quanta due to high energy of e-beam exposure. Such stochastic can induce the heterogeneity of various reactions in the photoresist. As a result, serious performance degradation is caused in key lithographic areas such as LWR (line width roughness), LCDU (local critical dimension uniformity), and resolution. It’s well known that quanta stochastic can be reduced by high dose condition. Thus, demand of high dose EB resist has been risen for further performance improvement. The previous studies showed the typical positive-tone chemically amplified resist (PCAR) comprising the PHS(polyhydroxystyrene) based polymer improved the lithographic performance up to 200μC/cm2, however, the performance was degraded in the high dose area over 250μC/cm2. These studies also suggested that the performance degradation could be caused by the cross-linking effect and decreasing the acid generation contrast induced by high dose. In this study, several PCAR formulations having the different materials were studied under Point-beam and MBMW (multi-beam mask writer) conditions to investigate the acid generation contrast influence on the lithographic performance. We have developed the new high acid generation PCAR and demonstrated the better LCDU and resolution performance on EUV blanks under the multi-beam condition compared with the typical PCAR.
This paper shows the latest challenges facing mask blank evolution to support leading-edge lithography processes. ArF immersion lithography has been employing multi-pass exposures to exceed the physical diffraction limit. These photomasks demand very accurate overlay, higher NILS and best CD uniformity for wider process window. The subject was considered from two perspectives from a mask blank producer, which are the mask-making perspective and the wafer lithography perspective. To improve the overlay, we introduced the dedicated CDL (Charge Dissipation Layer) for improving mask registration error. From the lithography resolution perspective, we have developed a high-transmittance phase-shifter film for higher NILS. CDU stability point of view, we described “Superior pattern fidelity CAR”, “High ArF durability SiN phase-shifter” and “Transparent etching stopper”. The industry decided to move to EUV lithography. But there are still many challenges for optical lithography.
A novel adhesion promoting material has been developed to prevent very small resist patterns from collapse. One target for the development of the material is to make an advanced negative-tone mask with 40 nm sub-resolution assist features (SRAF). The SRAF on photomasks has become shorter and shorter as well as narrowing. The 2-dimensional resist patterns easily collapse during the resist developing process. Resist under-coating material controlled the surface condition on a chrome absorber film, and it improved the resolution of the SRAF. As a result, SRAFs of 46nm width and 200nm length were achieved using the material. A negative-tone resist on the under-coating layer demonstrated 35 nm isolated line patterns on a mask without pattern collapse.
To make photomasks with high overlay accuracy, “Charge Dissipation Layer (CDL)” materials have been developed. Commercialized CDL materials can reduce electro-static charging on the surface of resist during electron beam exposure. However, some side effects are introduced to the mask-making process. The resolution performance of chemically amplified resist (CAR) is degraded owing to acid diffusion from the CDL components to the resist surface. A newly developed CDL solved this problem by controlling the acid diffusion. A positive-tone CAR with the CDL showed no resolution degradation, and performance was maintained for over 30 days after coating CDL and resist. Furthermore, the CDL has been evaluated on a negative-tone CAR which is more sensitive to CDL.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.