This paper presents an anti-jamming Global Positioning System (GPS) receiver antenna testing system. The system is composed of a set of six circular rails with different radii that are installed to emulate GPS satellite orbits, a set of GPS antennas each carried by a trolley that can move on the rails to emulate GPS satellites, a trolley movement controller to emulate the GPS satellite constellation propagation, and a multi-channel GPS simulation system that provides GPS signal and GPS satellite state position information. The GPS receiver antenna under test is at the center of the rails. As the GPS antennas carried by trolleys move on the rail to emulate the GPS satellite constellation propagation, the GPS receiver antenna under test receives the emulated GPS signals. The GPS signals’ arrival direction is almost the same as that coming from real GPS satellites. The anti-jamming GPS receiver antenna testing system can emulate a GPS satellite constellation with multiple GPS satellites; with high emulation accuracy (in both GPS signal phase and satellite angular position with respect to the GPS receiver antenna under test); requiring only a single phase calibration at the beginning of each test; and can support a 4 hours test / emulation.
This paper develops and evaluates an orbital emulator (OE) for space situational awareness (SSA). The OE can produce 3D satellite movements using capabilities generated from omni-wheeled robot and robotic arm motion methods. The 3D motion of a satellite is partitioned into the movements in the equatorial plane and the up-down motions in the vertical plane. The 3D actions are emulated by omni-wheeled robot models while the up-down motions are performed by a stepped-motor-controlled-ball along a rod (robotic arm), which is attached to the robot. For multiple satellites, a fast map-merging algorithm is integrated into the robot operating system (ROS) and simultaneous localization and mapping (SLAM) routines to locate the multiple robots in the scene. The OE is used to demonstrate a pursuit-evasion (PE) game theoretic sensor management algorithm, which models conflicts between a space-based-visible (SBV) satellite (as pursuer) and a geosynchronous (GEO) satellite (as evader). The cost function of the PE game is based on the informational entropy of the SBV-tracking-GEO scenario. GEO can maneuver using a continuous and low thruster. The hard-in-loop space emulator visually illustrates the SSA problem solution based PE game.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.