KEYWORDS: Tumors, Breast, Ultrasonography, Image segmentation, 3D modeling, Radiomics, Education and training, Image classification, Deep learning, 3D image processing
The 3D breast ultrasound is a radiation-free and effective imaging technology for breast tumor diagnosis. However, checking the 3D breast ultrasound is time-consuming compared to mammograms. To reduce the workload of radiologists, we proposed a 2.5D deep learning-based breast ultrasound tumor classification system. First, we used the pre-trained STU-Net to finetune and segment the tumor in 3D. Then, we fine-tuned the DenseNet-121 for classification using the 10 slices with the biggest tumoral area and their adjacent slices. The Tumor Detection, Segmentation, and Classification on Automated 3D Breast Ultrasound (TDSC-ABUS) MICCAI Challenge 2023 dataset was used to train and validate the performance of the proposed method. Compared to a 3D convolutional neural network model and radiomics, our proposed method has better performance.
KEYWORDS: Deformation, Digital breast tomosynthesis, Object detection, Transformers, Convolution, Breast, Feature extraction, Education and training, Performance modeling, Information fusion
In this study, we adapted a transformer-based method to localize lesions in digital breast tomosynthesis (DBT) images. Compared with convolutional neural network-based object detection methods, the transformer-based method does not require non-maximum suppression postprocessing. Integrated deformable convolution detection transformers can better capture small-size lesions. We added transfer learning to tackle the issue of the lack of annotated data from DBT. To validate the superiority of the transformer-based detection method, we compared the results with deep-learning object detection methods. The experimental results demonstrated that the proposed method performs better than all comparison methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.