COVID-19 has spread around the world since 2019. Approximately 6.5% of COVID-19 a risk of developing severe disease with high mortality rate. To reduce the mortality rate and provide appropriate treatment, this research established an integrated models with to predict the clinical outcome of COVID-19 patients with clinical, deep learning and radiomics features. To obtain the optimal feature combination for prediction, 9 clinical features combination was selected from all available clinical factors after using LASSO, 18 deep learning features from U-Net architecture, and9radiomics features from segmentation result. A total of 213 COVID-19 patients and 335 non-COVID-19 patients from5hospitals were enrolled and used as training and test sample in this research. The proposed model obtained an accuracy, precision, recall, specificity, F1-score and ROC curve of 0.971, 0.943, 0.937, 0.974, 0.941 and 0.979, respectively, which exceeds the related work using only clinical, deep learning or radiomics factors.
Vascular structures are important information for education purpose, surgical planning and analysis. Extraction of blood vessels of the organ is a challenging task in the area of medical image processing and it is the first step before obtaining the structure. It is difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the vessels from computed tomography (CT) image. We proposed deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of multi deep convolution neural networks to extract features from difference planes of CT data. Due to the problem of varies constrains that we cannot control, we add normalization process to make sure our network will well perform on clinical data. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 20 clinical CT volumes. Our network can yield an average dice coefficient 0.879 on clinical data which better than state-of-the-art methods such as level set, Frangi, and submodular graph cuts.
Extraction of blood vessels of the organ is a challenging task in the area of medical image processing. It is really difficult to get accurate vessel segmentation results even with manually labeling by human being. The difficulty of vessels segmentation is the complicated structure of blood vessels and its large variations that make them hard to recognize. In this paper, we present deep artificial neural network architecture to automatically segment the hepatic vessels from computed tomography (CT) image. We proposed novel deep neural network (DNN) architecture for vessel segmentation from a medical CT volume, which consists of three deep convolution neural networks to extract features from difference planes of CT data. The three networks have share features at the first convolution layer but will separately learn their own features in the second layer. All three networks will join again at the top layer. To validate effectiveness and efficiency of our proposed method, we conduct experiments on 12 CT volumes which training data are randomly generate from 5 CT volumes and 7 using for test. Our network can yield an average dice coefficient 0.830, while 3D deep convolution neural network can yield around 0.7 and multi-scale can yield only 0.6.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.