We present the design and the status of an optical lattice clock at Jet Propulsion Laboratory (JPL) based on bosonic 88Sr atoms with an emphasis on the laser system. The design of the clock aims for future implementation and science applications in space. The atomic source employs a two-dimensional magneto-optical trap realized with permanent magnets and a simple dispenser-based atomic oven. This design results in a low system size, weight and power, suppresses thermal atoms in the clock interrogation zone, and eliminates hot blackbody radiation in the science cell. The laser system utilizes exclusively direct diode lasers without second harmonic generation to minimize the complexity and power consumption of the overall system. The clock interrogation laser at 698nm and the laser for the second cooling stage at 689nm are both locked to the same high finesse optical cavity to further reduce the size of the system. Future paths to system miniaturization are also discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.