Babies born before they reach full-term are at an increased risk of long-term complications. Currently, there are no accurate ways to predict when preterm birth (PTB) will occur. The cervix, which plays an essential role in maintaining a pregnancy to term, has to remain closed throughout gestation. However, for birth to occur, it has to shorten, soften and dilate. This crucial remodeling process appears to be linked to variations in the arrangement of collagen. Previous in vitro work using X-ray diffraction suggests that collagen fibers exhibit a preferential orientation in the non-gravid cervix: adjacent to the endocervical canal and in the outermost areas, fibers are mainly arranged in a longitudinal fashion whereas in the middle area they are circumferentially organized. We proposed using a potentially non-invasive imaging technique, polarization-sensitive optical coherence tomography (PS-OCT), to detect the changes in the collagen arrangement of human non-gravid cervix (n=10). Qualitatively, we found that PS-OCT is capable of discriminating between the three cervical regions. Quantitatively, the apparent birefringence of these areas is significantly different across all samples (p<0.05). As expected, apparent birefringence is much lower adjacent to the endocervical canal and in the outermost areas. PS-OCT also seems to be capable of estimating the thickness of the cervical epithelium. Our study, therefore, shows that PS-OCT can assess the microstructure of the human cervical collagen in vitro and holds the potential to help us better understand cervical remodeling prior to birth and develop more timely identification and prevention of PTB pending the development of an in vivo probe.
Spontaneous preterm birth (sPTB) is one of the most serious causes of neonatal death. However, sPTB is unpredictable at present due to simplistic research. That cervix remodels progressively through collagen alterations plays an important role during gestation, but the study of cervical collagen structure has been limited by the lack of suitable observational method. Polarization-sensitive optical coherence tomography (PSOCT) is a functional extension of intensity-based OCT, which can noninvasively offer additional information, i.e., the light’s polarization state. Thus, the collagen properties of birefringence and depolarization can be obtained by a PSOCT in vivo. A PSOCT has been developed from our in-house swept-source (SS) OCT. In the PS-SS-OCT, a circularly polarized light is used to interact tissue and the backscattered light which carries sample’s polarization information is detected by two channels for measuring the horizontal and vertical polarization state respectively. Several human cervix tissues have been investigated by the PS-SS-OCT in vitro. The birefringence and depolarization information of cervical collagen can be obtained by processing the intensity and phase value of the two channels. Besides the birefringence and depolarization information, a conical beam scan strategy has been applied for exploring orientation of the collagen structure of human cervix. In the conical scan, the illumination beam streams into sample at a 45° of incidence angle, and the sample is imaged by acquiring successive B-scan over sample-rotation spans of 0-360°. Since probe of PSOCT can be easily integrated into a catheter or a hand-held probe, PSSS-OCT with a conical beam scan is an excellent candidate to identify cervical structure in clinical practice.
We simulate the shape of the density of states (DoS) of the quantum dot (QD) ensemble based upon size information provided by high angle annular dark field scanning transmission electron microscopy (HAADF STEM). We discuss how the capability to determined the QD DoS from micro-structural data allows a MonteCarlo model to be developed to accurately describe the QD gain and spontaneous emission spectra. The QD DoS shape is then studied, with recommendations made via the effect of removing, and enhancing this size inhomogeneity on various QD based devices is explored.
A novel nanoparticle, magnetic graphene quantum dot (MGQD), was synthesized by hydrothermally cutting graphene oxide-iron oxide sheet for contrast agent in magnetomotive optical coherence tomography (MMOCT) and confocal fluorescence microscopy (CFM). The MGQD has superparamagnetism, which allows the MGQD to be tracked and imaged using MMOCT. The MMOCT can display paramagnetic nanoparticle in vivo and provide an anatomical information with micron scale resolution and long imaging depth in clinic application. Moreover, the MGQD has excitation-depend fluorescence and emits visible fluorescence under the excitation of 360nm light, which allows the MGQD to be used as tracer in CFM. CFM can offer intracellular details due to higher resolution, while CFM is unsuitable for imaging anatomical structure because of the limited view of field. The use of MGQD for cell or tissue tracking realizes the combination of MMOCT and CFM, and gives a more comprehensive diagnosis.
An optical coherence tomography (OCT) system with an A-scan rate of 20 kHz was developed for measuring the biomechanical properties of human finger-pad skin. Such an OCT system operates at a center wavelength of 890 nm with a spectral bandwidth of 150 nm resulting in a very good axial resolution of 2.6 μm. The measured sensitivity and sensitivity roll-off of the system were ~93 dB and ~6 dB mm-1, respectively. Elastographic B-scan images of the human finger-pad skin were constructed by using 1000 A-scans. Deformations of the human finger-pad before and after sliding, while pressed against a transparent optical glass plate under the action of 0.5-2 N force, were examined both at the surface and sub-surface. Biomechanical properties, i.e., deformation of the skin, finger-pad/glass interface contact area were studied.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.