The problems of imagery registration, conflation, fusion and search require sophisticated and robust methods. An algebraic approach is a promising new option for developing such methods. It is based on algebraic analysis of features represented as polylines. The problem of choosing points when attempting to prepare a linear feature for comparison with other linear features is a significant challenge when orientation and scale is unknown. Previously we developed an
invariant method known as Binary Structural Division (BSD). It is shown to be effective in comparing feature structure for specific cases. In cases where a bias of structure variability exists however, this method performs less well. A new method of Shoulder Analysis (SA) has been found which enhances point selection, and improves the BSD method. This paper describes the use of shoulder values, which compares the actual distance traveled along a feature to the linear distance from the start to finish of the segment. We show that shoulder values can be utilized within the BSD method,
and lead to improved point selection in many cases. This improvement allows images of unknown scale and orientation to be correlated more effectively.
An approach to conflation/registration of images that does not depend on identifying common points is being developed. It uses the method of algebraic invariants to provide a common set of coordinates to images using continuous chains of line segments formally described as polylines. It is shown the invariant algebraic properties of the polylines provide sufficient information to automate conflation. When there are discrepancies between the image data sets, robust measures of the possibility and quality of match (measures of correctness) are necessary. Decision making and the usability of the resulting conflation depends on such quality control measures. These measures may also be used to mitigate the effects of sensor and observational artifacts. This paper describes the theory of algebraic invariants and presents a conflation/registration method and measures of correctness of feature matching.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.