Breast density has demonstrated to be an important risk factor for the development of breast cancer and, therefore, different fully automated density assessment tools have been introduced to obtain quantitative glandular tissue measures. Density maps (DMs) provide local tissue information, representing the amount of glandular tissue between the image receptor and the x-ray source at every pixel in the image. Usually, DMs are obtained from "for processing," i.e. raw, mammograms. This fact could become a tricky problem because this type of images are not preserved in the clinical setting. The aim of this work is to introduce a deep learning based framework to synthesize glandular tissue DMs from "for presentation" mammograms. First, the breast region is located using a dedicated object detector network. Next, a generative adversarial network is used to obtain synthetic density maps, that are useful to evaluate not only the glandular tissue distribution but also the total glandular tissue volume within the breast. Results show that synthetic DMs obtain a structural similarity index of SSIM = 0.93 ± 0.06 with respect to real images. Similarly, shared information between the real and synthetic images, computed using the histogram intersection, corresponds to HI = 0.84 ± 0.10, while the average pixel difference represents only 3.85 ± 2.78% of breast thickness. Furthermore, glandular tissue volume (GTV) obtained from synthetic density map show a strong correlation with the value provided by the real one (ρ = 0.89 [C.I 0.87 to 0.91]). In conclusion, generative deep learning models can be useful to evaluate breast composition, from local to global tissue distribution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.