The evolution properties and the spectral degree of coherence of a partially coherent multi-Gaussian Schell-model vortex (MGSMv) beam propagating in uniaxial crystals orthogonal to the optical axis are studied. Propagation expression for the cross-spectral density and the average intensity of the partially coherent MGSMv beam propagating in uniaxial crystals are derived. Some analyses are illustrated by numerical examples related to the propagation properties and coherence vortices of the partially coherent MGSMv beam in uniaxial crystals. Numerical results show that, upon propagating in uniaxial crystals, the partially coherent MGSMv beam loses its initial dark center distribution. After propagating for sufficient distances, the partially coherent MGSMv beam will also evolve into a flat-topped beam. The evolution behavior of average intensity and coherent vortices depends on the crystal including the ratio of extraordinary and ordinary refractive indices, and beam parameters including the spatial correlation length and topological charge of the beams, as well as the propagation distance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.