Nonlinear optical Stokes ellipsometric (NOSE) microscopy was demonstrated for the analysis of collagen structure in a mouse tail section. NOSE is based on polarization-dependent second harmonic generation (SHG) imaging. The fast polarization-modulation was achieved using an electro-optic modulator (EOM), allowing for the potential of video-rate NOSE analysis. The signal to noise advantages associated with suppression of 1/f noise by rapid polarization modulation allowed reliable recovery of the local-frame tensor on a per-pixel basis. An iterative approach involving laboratory to local frame coordinate transformation was developed to recover the spatial distribution of local-frame nonlinear susceptibility tensor elements of collagen as well as the polar and azimuthal orientation angles of the collagen structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.