Buried heterostructure quantum cascade lasers (BH-QCLs) operating at high temperature in mid-infrared (MIR) to THz spectral range are desired for chemical sensing and free-space optical communication (FOC). In this work, Fe doped semi-insulating InP (SI-InP) regrowth is demonstrated in a hydride vapor phase epitaxy (HVPE) reactor for advanced MIR and THz BH-QCLs grown by MBE and MOCVD. SI-InP regrowth is implemented in THz QCL pillar arrays and narrow width and reverse-taper MIR BH-QCLs for efficient heat dissipation. By exploiting SI-InP regrowth, the parasitic capacitance in MIR distributed feedback BH-QCL can be suppressed, which is exploited for high speed FOC application.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.