Probabilistic graphical models have strong potential for use in hyperspectral image classification. One important class of probabilisitic graphical models is the Conditional Random Field (CRF), which has distinct advantages over traditional Markov Random Fields (MRF), including: no independence assumption is made over the observation, and local and pairwise potential features can be defined with flexibility. Conventional methods for hyperspectral image classification utilize all spectral bands and assign the corresponding raw intensity values into the feature functions in CRFs. These methods, however, require significant computational efforts and yield an ambiguous summary from the data. To mitigate these problems, we propose a novel processing method for hyperspectral image classification by incorporating a lower dimensional representation into the CRFs. In this paper, we use representations based on three types of graph-based dimensionality reduction algorithms: Laplacian Eigemaps (LE), Spatial-Spectral Schroedinger Eigenmaps (SSSE), and Local Linear Embedding (LLE), and we investigate the impact of choice of representation on the subsequent CRF-based classifications.
KEYWORDS: Image segmentation, 3D modeling, Magnetic resonance imaging, 3D image processing, Computed tomography, Algorithm development, Barium, 3D acquisition, Detection and tracking algorithms, Brain
We propose a framework that efficiently employs intensity, gradient, and textural features for three-dimensional (3-D) segmentation of medical (MRI/CT) volumes. Our methodology commences by determining the magnitude of intensity variations across the input volume using a 3-D gradient detection scheme. The resultant gradient volume is utilized in a dynamic volume growing/formation process that is initiated in voxel locations with small gradient magnitudes and is concluded at sites with large gradient magnitudes, yielding a map comprising an initial set of partitions (or subvolumes). This partition map is combined with an entropy-based texture descriptor along with intensity and gradient attributes in a multivariate analysis-based volume merging procedure that fuses subvolumes with similar characteristics to yield a final/refined segmentation output. Additionally, a semiautomated version of the aforestated algorithm that allows a user to interactively segment a desired subvolume of interest as opposed to the entire volume is also discussed. Our approach was tested on several MRI and CT datasets and the results show favorable performance in comparison to the state-of-the-art ITK-SNAP technique.
A significant increase in the availability of high resolution hyperspectral images has led to the need for developing pertinent techniques in image analysis, such as classification. Hyperspectral images that are correlated spatially and spectrally provide ample information across the bands to benefit this purpose. Conditional Random Fields (CRFs) are discriminative models that carry several advantages over conventional techniques: no requirement of the independence assumption for observations, flexibility in defining local and pairwise potentials, and an independence between the modules of feature selection and parameter leaning. In this paper we present a framework for classifying remotely sensed imagery based on CRFs. We apply a Support Vector Machine (SVM) classifier to raw remotely sensed imagery data in order to generate more meaningful feature potentials to the CRFs model. This approach produces promising results when tested with publicly available AVIRIS Indian Pine imagery.
CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT
scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being
abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we
propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans
from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution
through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the
original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.