We have measured a helicity-dependent photocurrent at zero external magnetic field in a device based on a semiconductor quantum well embedded in a p-i-n junction. The device is excited under vertical incidence with circularly polarized light. The spin filtering effect is evidenced in the range 77–300 K at B = 0 owing to a CoFeB/MgO spin filter with out-of-plane magnetization in remanence. The helicity-dependent photocurrent is explored as a function of the temperature and bias. These characteristics are compared with those of a spin photocurrent device with in-plane magnetized CoFeB/MgO spin filter, excited under oblique incidence with circularly polarized light. In contrast to the in-plane spin filter device, the circularly polarized light asymmetry of the photocurrent in the out-of-plane device depends weakly on the external bias. This may be attributed to the large spin relaxation anisotropy in III-V zinc-blende quantum wells in the presence of a vertical electric field.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.