Hybrid plasmonic waveguides (HPWs) have attracted wide attention in recent years, because it makes a better compromise between the low loss of dielectric waveguide and the constraint capability of surface plasmonic waveguide. In this work, a hollow HPW with slat metal layer is analyzed to further reduce the loss and maintain constraint capability, then Bragg grating is designed and studied. By changing the waveguide width to further analyze the mode. The results show that normalized mode area is around 0.01, and propagation length (Lp) is up to 3500 μm, for TM polarized mode at operating wavelength of 1550 nm. For TE mode, Lp keeps millimeter level. Based on hollow HPW, Bragg grating is constructed by alternating the waveguides with different widths. Since the effective index of waveguide mode is quite sensitive to the change of the width and the trends of TM and TE modes are different from each other, Bragg gratings with different filtering characteristics and polarization properties can be designed by choosing combinations with different width. Simulations prove the validity of the design. HPW and Bragg structure proposed in this work would provide a reference for designing related photonic devices and have the potential applied value in the field of optical communication and integrated optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.