The Buchdahl dispersion model provides a rapidly converging polynomial form for describing the dispersion of refractive materials. Via this model, the dispersion of a material over the waveband of concern can be accurately characterized by a simple polynomial form, often out to only the second order. In this paper, the Buchdahl model is applied to hybrid refractive-diffractive achromats for both 3-5μm (MWIR) band and 8-12μm (LWIR) band. For each waveband, Buchdahl dispersion coefficients of IR materials and the diffractive optical element (DOE) are defined by optimally choosing the Buchdahl chromatic coordinate and best-fitting the Buchdahl model to the dispersion of materials and the DOE. The principles for selecting 1 to 2 IR materials combined with a DOE to produce hybrids achromatized at 3 and 4 wavelengths are discussed. A series of thin lens predesign examples are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.