Convolutional neural networks in deep learning models have dominated the recent image recognition works. But the lack of capacity to maintain spatial invariance makes identification of micronucleus cells as a classic task in digital pathology still a challenge task. In this paper, a novel convolutional neural network for feature maps spatial transformation (FSTCNN) is proposed, which incorporates a Spatial Transformer Network. Our model allows the spatial manipulation of data within the network, provides the ability of active spatial transformation for neural network without any extra supervision. We compared the results of inserting STN into different convolutional layers and found that such a network can transform the input image more steadily, correct the image to one certain position, make it fill the whole screen to create a better environment for image recognition. The results show a distinct advantage over other convolutional neural networks for medical image recognition.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.