Purpose: Given the recent COVID-19 pandemic and its stress on global medical resources, presented here is the development of a machine intelligent method for thoracic computed tomography (CT) to inform management of patients on steroid treatment.
Approach: Transfer learning has demonstrated strong performance when applied to medical imaging, particularly when only limited data are available. A cascaded transfer learning approach extracted quantitative features from thoracic CT sections using a fine-tuned VGG19 network. The extracted slice features were axially pooled to provide a CT-scan-level representation of thoracic characteristics and a support vector machine was trained to distinguish between patients who required steroid administration and those who did not, with performance evaluated through receiver operating characteristic (ROC) curve analysis. Least-squares fitting was used to assess temporal trends using the transfer learning approach, providing a preliminary method for monitoring disease progression.
Results: In the task of identifying patients who should receive steroid treatments, this approach yielded an area under the ROC curve of 0.85+- 0.10 and demonstrated significant separation between patients who received steroids and those who did not. Furthermore, temporal trend analysis of the prediction score matched expected progression during hospitalization for both groups, with separation at early timepoints prior to convergence near the end of the duration of hospitalization.
Conclusions: The proposed cascade deep learning method has strong clinical potential for informing clinical decision-making and monitoring patient treatment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.