In this paper, upon the background of driving assistance on highway, we propose a real-time vehicle detection and tracking algorithm based on traffic scene analysis. We describe a general traffic scene analysis framework for vehicle detection and tracking based on roadside detection at first. On that basis, we present a new object detection algorithm via fusion of global classifier and part-based classifier and a vehicle detection algorithm integrating classifying confidence and local shadow. The local shadow is obtained by detecting the Maximally Stable Extremal Regions (MSER) using a multi-resolution strategy. Finally, we test our algorithm on several video sequence captured from highway and suburban roads. The test results show high efficiency and robustness when coping with environment transition, illumination variation and vehicle orientation change.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.