Organic-inorganic halide perovskite has emerged as promising candidate materials for next-generation energy harvesting and light-emitting applications with the advantages of low processing cost, high defects tolerance, and excellent power conversion efficiency. The instability of these perovskite-based materials under illumination, however, remains a major technical barrier for commercialization. Various techniques have been applied to improve the photo-stability of perovskites. Since the dynamic of photo-generated charged carriers and photo-activated mobile ions affect the stable performance of these applications, a comprehensive understanding of how illumination affect perovskites are of vital importance to improve the performance of perovskite-based optoelectronic applications. In this report, the recent progress of the light soak study on three kinds of perovskites is presented, using depth-resolved, temporal-resolved, and detection-wavelength selective spectroscopic imaging techniques. These works clarify different dominate roles in different perovskite structures and demonstrate the advantages of the imaging spectroscopy in studying the carrier dynamics of perovskite-based materials under light soaking, which is of crucial importance for their applications.
Lead halide perovskites are widely applied in not only photovoltaics, but also on-chip light source, nanolaser, and photon detection. In order to promote the incorporation of perovskite into integrated devices, microscale color patterning flexibility is a very important step. Femtosecond (fs) laser fabrication has shown significant advantages of high spatial resolution, low surround damage, and high processing efficiency over the other laser fabrication. Compared to the state-of-art techniques, the straightforward fs-direct laser writing (fs-DLW) also has advantages of mask-free, simple one step, and contactless. Here, a specially designed formamidinium lead mixed-halide nanoplatelet (FAPb(BrxI1-x)3 NP) with gradient bandgap is fabricated by chemical vapor deposition method. Then, spatially resolved modulation of the fluorescence by fs-DLW is demonstrated on the as-grown NP. The fluorescence color is modulated from red to green under a controlled laser pulse, due to the replacement of iodide ions by bromide ions. Specifically, the as-grown NP (thickness≈800 nm) is with a gradual bromide-iodide composition along the depth, mainly exhibits an emission of 710-nm from the bottom iodine rich phase. After halide substitution induced by fs-DLW, new fluorescence peaks appear in the wavelength range of 540 to 700 nm, which is controlled by the fs-DLW conditions. The fluorescent color is spatially modulated from red to green, enabling microscale resolved multicolor emission, implying the potential applications in micro-encryption, sensors, multicolor displays, lasers, and light-emitting devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.