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ABSTRACT 

Miniaturization of optical systems has promoted a revolution in lens technology and this emerging field has much 
interest for medical practitioners as well as electronic engineers. Tunable liquid lens capable of adjusting its focal length 
have special curiosity in this regard where in micro-scale actuators are often integrated. Here we demonstrate a lens 
consisting of a transparent elastomer liquid composite containing organo modified cellulose nanocrystals. The actuator 
with the working voltage of only up to 0.8kV was capable to produce an area expansion and thereby altering the 
curvature of the lens (focal length) reversibly in 5 seconds. The effect of filler concentration on optical property and 
dielectric behavior of the composites were also analyzed. 
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1. INTRODUCTION 
Cellulose is an organic, fibrous, water-insoluble substance regarded as most abundant natural, organic, renewable 
polymer and the major component of plant cell walls. Cellulose consists of micro fibrils which are formed by hydrogen 
bonding between cellulose molecule chains and these micro fibrils have both crystalline and amorphous regions in them. 
Shorter crystalline parts with high crystalline degree can be made by breaking down those micro fibrils. Acid hydrolysis 
of cellulose fibers produce crystalline rod-like residues know as cellulose nanocrystals (CNCs) [1]. These 
environmentally-friendly CNCs possess excellent optical and mechanical properties [2, 3], and can be easily 
incorporated with polymers to produce reinforced composites [4] through proper chemical modification methods. 
Availability, low cost, high aspect ratio, low density, renewability, biodegradability and unique structural morphology 
made CNCs the unique among nanomaterials used in biomedical (drug delivery systems, bactericidal wound dressing, 
bandage, surgery cloth etc.) and technical (nanofiller, reinforcing agents, filtration, packaging, cosmetics, food additives 
etc.) applications. 

Recent years have witnessed miniaturizing optical systems receiving focus from several interdisciplinary fields of 
research. Research for developing tunable lenses is ongoing and there are several approaches for tenability by changing 
the focal length and curvature [5-7]. Focal length of the lenses can be tuned both mechanically and electrically [8, 9] and 
such reconfigurable lenses can be classified into some general categories like liquid crystal, electro-wetting and liquid-
filled. Polydimethyl siloxane (PDMS) is a widely discussed polymer for lens application. Liquid mixture of PDMS-
OCNC potentially offers an attractive possibility to create highly tunable optical components.  

In this paper, we report a reconfigurable PDMS-Organo modified cellulose nanocrystals (OCNC) composite lens system 
where focal length and curvature can be controlled by applying voltage. The optical lens made of PDMS-OCNC can 
provide attractive opportunities in many applications by way of its ability to dynamically tune the lens by changing the 
optical properties. Here we will discuss about the experiment and material characterization focusing on the materials, 
preparation and modification of CNCs followed by a brief experimental schematic and also the final outcome of the 
developed lens. 
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2.4 PDMS/OCNC nanocomposite preparation 

PDMS solution was prepared by mixing base and the viscous PDMS mixture was stirred well to ensure homogeneity. It 
was then mixed with OCNC (prepared in the last section) to fabricate the PDMS/OCNC0.001% nanocomposite. Solution 
mixing process was employed for synthesizing PDMS/OCNC nanocomposite as the process exhibits more versatility and 
ensures better dispersion of OCNC in PDMS polymer. 

2.5 Nanocomposites characterization 

Diode Array Spectrophotometer (8452A, HP) was used to investigate transparency of PDMS/OCNC nanocomposite 
within visible wavelength, between 400-700 nm. A semiconductor device analyzer (HP 4283A) was employed to 
measure the dielectric constant of nanocomposite within low frequency range. Setup for lens actuator with function 
generator (33220A; Agilent), high voltage amplifier (20/20; Trek), data acquisition system (PULSE, B&K) and 
LabVIEW software installed in a computer used to stimulate actuator. 

 

3. RESULTS AND DISCUSSION 

The transparency of the PDMS/OCNC composite was checked by UV-visible spectrometry. From the transmittance 
versus wavelength plots, an increase in transmittance at 400-700 nm, which is approximately the lower limit of the 
visible region, was observed. It is also found that the average transmittance values decreased from 70 to 45 with 
increasing the weight percent of OCNCs in PDMS at 500 nm shown in Figure 3. This is due to the fact that the increase 
in density of the filler with increase in concentration makes the light scattering through the film difficult. 

 
Figure 3. Optical transparency of PDMS and CNC composites with different percentage of composition. 

SEM image obtained for both PDMS and its composite PDMS/OCNC0.01% are shown in Figure 4. Neat PDMS surface 
is very smooth whereas the composite has rough surface containing homogenously dispersed OCNCs. This indicates 
good and uniform dispersion of OCNCs nanoparticles in PDMS. 

 

Figure 4. SEM image of a) PDMS and b) PDMS/OCNC0.01%. 

In addition, the dielectric responses of the samples were also measured for the PDMS matrix and its composites at 20-
500 Hz frequency shown in Figure 5. The dielectric measurement also shows that the incorporation of the OCNC in the 
PDMS matrix increases the dielectric constant. As the concentration of OCNC increased, movement of free charge 
carriers occurred due to the interfacial polarization and thus enhanced its dielectric constant [11]. According to Maxwell-
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