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ABSTRACT 
 
GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence 
applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited 
by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber 
or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with 
a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By 
exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been 
conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of 
scattering and to see how this affects the overall transmission rate and distance. This is of great interest for 
communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and 
vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the 
length at which the data can be transmitted. This distance could be further improved by making use of high power laser 
arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. 
This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser 
diodes will play an important part in free space optical communications and will be vital in the advancement of security 
and defence applications. 
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1. INTRODUCTION 
 
The use of GaN-based devices for optical communications has been an ever-growing topic in recent years [1,2]. In order 
to match the exponential growth of wireless data throughput caused by the increase of mobile devices used for 
multimedia and streaming, other parts of the electromagnetic spectrum have been explored for communication purposes. 
The visible spectrum has a large amount of unregulated bandwidth which can be exploited for this purpose [3,4]. Laser 
based visible light communication systems using non-return-to-zero, on-off keying (NRZ-OOK) have shown data rates 
up to 4 Gbit/s [5]. Here, we report a data rate of 4.7 Gbit/s using a directly modulated InGaN laser diode, emitting at a 
wavelength of 450 nm. Also, an underwater optical tracking system was put in place which allowed not only tracking, 
but data transmission to be achieved under the water. Different water qualities were tested and a data rate of 2.5 Gbit/s 
was achieved. High power laser bars and arrays can be fabricated which can produce up to 4 W of power. These can be 
packaged in a way that allows each laser to be individually addressable, meaning the number of lasers and hence the 
power can be altered easily. 
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Experiments have been conducted to analyse the performance of different laser diodes for communications in free space 
and underwater. The free space measurement was carried out using a commercially available laser diode (Osram 
PL450B) [6], emitting at 450 nm. The temperature was kept constant at 16.6°C using a Peltier cooler and a temperature 
controller to avoid any unwanted wavelength shifts throughout the measurements. The basic laser characteristics were 
measured and the LVI and spectra plots can be seen in Figure 1 and Figure 2, respectively.  

 
Figure 1: LVI characteristics of laser diode at 16.6°C. 

 

Figure 2: Optical spectra of laser diode at increasing bias currents. 

As shown in Figure 1, the threshold of this laser diode is approximately 25 mA which corresponds to a voltage of 
4.29 V. These lasers are capable of producing tens of milliwatts of power when measuring directly from the output; 
however a setup has been put in place for these measurements which focuses the light onto the power meter or 
photodetector using lenses and is not optimised for collecting all of the light. A power level of 3.8 mW was achieved in 
this setup at a corresponding current of 120 mA. There is already more than enough power from the laser at this point for 
these applications. There is a small red-shift in the optical spectra with increasing current which is due to the increasing 
junction temperature, reducing the bandgap of the device [2]. 

2. LASER BASED VLC IN FREE SPACE 
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Frequency response measurements were carried out in order to calculate the optical bandwidth of the system. An RF 
signal from a network analyser (Agilent HP8753ES) was combined with the DC bias using a bias tee, and the output was 
connected to the laser diode. The light was collected and collimated using two microscope lenses and was focussed onto 
a high speed PIN photoreceiver (HSA-X-S-1G4-SI) which has a bandwidth of 1.4 GHz. The frequency response of the 
system was measured at varying current values and is shown in Figure 3. 

 

Figure 3: Frequency response at different bias currents. 

The current was varied from 40 mA up to 120 mA, with the maximum optical bandwidth shown at 50 mA. The system 
bandwidth appears to be limited by the bandwidth of the photoreceiver; however a bandwidth value of 1.8 GHz was 
achieved at 50 mA. Higher values would be expected if the measurement was repeated using a photoreceiver with a 
higher bandwidth. It can be seen in Figure 4 that the bandwidth of the system reaches a maximum point and then rolls 
over and flattens off due the photoreceiver used. 

 

Figure 4: Optical -3dB bandwidth vs drive current. 
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Data transmission experiments were conducted by using a bit-error rate test (BERT) system to supply a pseudo-random 
bit sequence (PRBS) to the laser. The laser diode was driven by this NRZ-OOK signal combined with a DC bias using a 
bias tee, as before. A 2 V peak-to-peak signal of 27-1 bits was used for these experiments. Eye diagrams were captured 
using a digital sampling oscilloscope and Figure 5 shows open eye diagrams at (a) 1.5 Gbit/s and (b) 4.7 Gbit/s. 

 

Figure 5: Eye diagrams at (a) 1.5 Gbit/s and (b) 4.7 Gbit/s. 

By inserting a neutral density filter, it is possible to vary the optical power that reaches the photoreceiver and the 
corresponding error rate can be measured. Figure 6 shows the bit-error rate as a function of received optical power giving 
a better understanding of the data transmission behaviour. Different bit rates were measured and the current was varied 
to find the optimal drive current for each bit rate. 

 

Figure 6: Bit-error rate vs received optical power at 1.5, 2, 3 and 4.7 Gbit/s at the optimum bias current for each bit rate. 

The optimal drive current ranged from 54.1 mA to 107.1 mA and the power required to achieve error free data 
transmission (< 1×10-9) at 1.5, 2, 3 and 4.7 Gbit/s was -18.81, -16.90, -14.20 and -7.37 dBm, respectively. The expected 
power increase required from 1.5 Gbit/s to 3 Gbit/s whilst maintaining error free transmission would be 3 dB, however 
an increase of 4.61 dB is seen here. This means that there is a power penalty of 1.61 dB which is due to the limited 
response of the photoreceiver. This becomes even more apparent as the data rate increases to 4.7 Gbit/s and this effect 
can be seen in the corresponding eye diagram too. 
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4. SUMMARY / CONCLUSIONS 

In summary, it has been shown that data transmission at rates approaching 5 Gbit/s has been achieved and that higher 
data rates using laser diodes for visible light communication will be possible once certain limitations are overcome. 
Lasers showing bandwidths up to 1.8 Gbit/s have been shown and their data transmission characteristics were presented. 
The ability to conduct these type of measurements underwater has also been shown with successful data transmission at 
2.5 Gbit/s. Different water qualities have been tested and the ability to track the light has been explored in depth. New 
advancements have allowed the fabrication of laser bar arrays which allows much higher power and the ability to have 
individually addressable lasers. These could be beneficial for communication purposes and taking the work on this 
forward. 

REFERENCES 

[1] Schubert, E. F., [Light-emitting diodes], Cambridge University Press (2006). 

[2] Nakamura, S., Pearton, S. and Fasol, G., [The Blue Laser Diode], Springer (1997). 

[3] Tsonev, D., Videv, S. and Haas, H., “Towards a 100 Gb/s visible light wireless access network” Optics Express 
23(2), 1627-1637 (2015). 

[4] Cisco, “Cisco Visual Networking Index: Forecast and Methodology, 2015-2020” Cisco White Paper (2015). 

[5] Lee, C., Zhang, C., Cantore, M., Farrell, R. M., Oh, S. H., Margalith, T., Speck, J. S., Nakamura, S., Bowers, J. E. 
and DenBaars, S. P., “4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication” Optics 
Express 23(12), 16232-16237 (2015). 

[6] OSRAM, Available at: http://www.osram-os.com 

[7] TopGaN Ltd, Available at: http://www.topganlasers.com  

[8] Gawdi, Y. J., “Underwater Free Space Optics” Master’s thesis, North Carolina State University (2006). 

[9] Watson, M. A., Blanchard, P. M., Stace, C., Bhogal, P. K., White, H. J., Kelly, A. E., Watson, S., Valyrakis, M., 
Najda, S. P., Marona, L and Perlin, P., “Assessment of laser tracking and data transfer for underwater optical 
communications” Proc. SPIE Security and Defence 9248, 92480T-1-92480T-10 (2014). 

 

 

 

  

 

Proc. of SPIE Vol. 9991  99910A-7


