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Abstract. This paper contains a transcript of my presentation at the Wyant Tribute Symposium on 
August 2, 2021 at SPIE’s Optics & Photonics conference in San Diego, California. The technical part 
of the paper has no overlap with a previous article of mine that was published in Applied Optics last 
year, bearing the same title as this one.1 The applications of Fourier transformation described in the 
present paper include the central limit theorem of probability and statistics, the Shannon-Nyquist 
sampling theorem, and computing the electromagnetic field radiated by an oscillating magnetic dipole. 

1. Introduction. Let me begin by saying that I have known Jim for 33 years. This is
what he looked like when I joined the Optical Sciences Center (now College of
Optical Sciences) in the Fall of 1988. You can tell that he hasn’t changed a bit.

In contrast, see how the rest of us have aged; this is what I looked like in those days! 

For reasons that will become clear in a few minutes, whenever I think of Jim Wyant, the 
following story pops into my head. 

A destitute man happens to meet the Lord Almighty. 
He asks: “God, what’s a million years to you?” 

The Lord responds: “Oh, nothing; it’s just like a second to me.” 
The poor man asks: “God, what’s a million dollars to you?” 

The Lord says: “Nothing; it’s like a penny to me.” 
The man finally says: “Dear Lord, may I have a penny?” 

To which the Lord responds: “Absolutely; please wait a second!” 

Now, here’s the background story. There was a time that I thought I had many rich and 
generous friends. So, I had this idea of asking each of them to donate half a million dollars to our 
College, so that we could create endowed scholarships in their own names. I asked Jim to 
accompany me to the office of the University’s vice-president to see if she would agree to match 
such donations by covering the students’ tuition and other expenses. To our delight, vice-president 
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Leslie Tolbert loved the idea and consented to our request. Moreover, she allowed us to have as 
many as 30 such endowed scholarships with matching provided from her office’s budget. 

I have many rich and generous friends! 

On our way back from the VP’s office, I turned to Jim and said: “Jim, why don’t 
you become a donor and give us the first half-million dollars to start this Friends of 
Tucson Optics (FoTO) scholarship program. To which Jim responded: “You’ll never 
get a penny from me!” Fortunately for our College and for our students (then and 
forever after), we didn’t have to wait a million years for Jim to change his mind! In 
less than two weeks, Jim had decided to endow the first FoTO scholarship — to be 
named after his beloved deceased wife, Louise. 

We went on to receive a few more gifts from generous individuals and established a couple 
more endowed FoTO scholarships. A few years later, Jim announced that he would donate another 
10 million dollars to the College, provided that the College would use the money for a four-to-one 
matching of $100,000 gifts. That is when the money started pouring in and, in a matter of two to 
three years, we had all thirty FoTO scholarships fully endowed, thanks to Jim’s generosity. 

As for my rich and generous friends that I had initially intended to rely upon, it turned out that 
my rich friends weren’t generous, and my generous friends weren’t rich! 

My rich friends aren’t generous, 
and my generous friends aren’t rich! 

With regard to my presentation today, I wanted to do something that touched upon the 
educational aspects of our College. As you all know, Jim is a gifted teacher and, to my eternal 
consternation (!), our students have always had a much higher opinion of him as an instructor 
than they’ve had of the rest of us on the faculty. So, I thought I should contribute a paper to this 
symposium that might have some educational value. That is when I hit upon the unifying theme of 
Fourier transformation. 

Our colleague, Prof. Sasian, edited a special edition of Applied Optics last year. This was a 
commemorative issue in honor of the renaming of our College to James C. Wyant College of 
Optical Sciences. My plan was to submit a paper entitled “Ubiquity of Fourier Transformation in 
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Optical Sciences” to that special issue of Applied Optics, then present some of its results at this 
Tribute Symposium to Dean Wyant, which was initially scheduled for last August. Unfortunately, 
the pandemic intervened and the Tribute was postponed until this week. 

That Applied Optics paper1 has now been in the public domain for more than a year and, in any 
event, there isn’t much time available today for me to discuss the technical aspects of the paper in 
any detail. So, I’ll just mention the kind of topics that are covered in the paper, hoping that you will 
find them sufficiently interesting to look up the details on your own. The published version of this 
presentation, however, will contain a few more applications of Fourier transformation that were not 
covered in the Applied Optics paper. 

The organization of this paper is as follows. In Sec.2, I describe the central limit theorem of 
probability and statistics, which is the fundamental mathematical argument as to why many natural 
phenomena appear to have a Gaussian probability distribution. The comb function, comprising an 
infinite array of identical, equi-spaced delta-functions, is the subject of Sec.3, where I use two 
different methods to show that comb( ) is the Fourier transform of comb( ). Section 4 describes 
how one may use the comb function to derive the Fourier series coefficients of periodic functions. 
Another application of the comb function in the context of the Shannon-Nyquist sampling theorem 
is the subject of Sec.5. Finally, in Sec.6, I use a Fourier-transform-based method to solve Maxwell’s 
equations of classical electrodynamics and derive the radiation field of a magnetic dipole oscillator. 

2. The central limit theorem. It is a well-known fact that the Fourier transform of the unit
rectangular function, rect( ), is sinc( ) = sin( ) ( ).2 Successive convolutions of rect( ) with
itself yield tri( ) = rect( ) rect( ), whose Fourier transform is sinc ( ), and hump( ) =rect( ) rect( ) rect( ), whose Fourier transform is sinc ( ).† Clearly, the -fold convolution
of rect( ) with itself yields a function of total width , unit area, and Fourier transform sinc ( ),
whose profile along the -axis approaches that of a Gaussian function as  continues to rise.

Considering that sin( ) = ( ) 3! + , it is seen that sinc( ) 1 ( )  in the 
immediate vicinity of = 0 and that, further away from the origin, it has positive as well as 
negative values whose magnitudes are significantly smaller than 1. Thus, sinc ( ) for large  is a 
function of  that, to a good approximation, equals [1 ( ) ]  in the immediate neighborhood 
of the origin, and remains close to zero elsewhere. Given that 1  around = 0, we 
conclude that sinc ( ) approaches the Gaussian function ( )  for sufficiently large . The 
inverse Fourier transform of this function, namely, ( ) = 6 ( ) exp( 6 ), should thus 
provide a good approximation to the -fold convolution of rect( ) with itself. 

The method described in the preceding paragraph is quite general and can be applied to the 
convolution of a large number of functions that may or may not be identical, say, ( ) ( )( ), provided that the individual functions satisfy certain constraints. As an example, let us 
consider a large number of independent random variables, say, , , , , having respective 
probability distributions ( ), ( ), , ( ). In general, ( ) 0 and ( )d = 1. The 
sum = + + +  of these random variables is known to have the probability 
distribution ( ) = ( )  ( ) ( ).3 

†Here, we are using the standard definition of rect( ) = 1 when | | ½, and 0 otherwise. Similarly, tri( ) = 1 | |
when | | 1, and 0 otherwise.2 The name used for the function hump( ) = ¾  when | | ½, and ½(| | )  
when | | , and 0 when | | , is not standard. The function sinc( ) is often defined as sin( ) ( ). 
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Next, we define an average value = ( )d  and variance = ( ) ( )d  
for each random variable, then shift ( ) by  along the -axis to arrive at the shifted (or 
centered) probability-density function ( ) = ( + ), which satisfies the following identities: ( )d = ( + )d = ( ) ( )d = ( )d = 0. (1) ( )d = ( + )d = ( ) ( )d = . (2)

Denoting the so-called characteristic function2-4 of the probability density ( ) by ( ) =( ) d , we find the following identities among , , ( ), ( ), ( ) and ( ): ( ) = ( ) d = ( + ) ( )d = exp(i2 ) ( ). (3)d ( ) d | = i2 . (4)d ( ) d | = 0. (5)d ( ) d | = 4 . (6)( ) = ( ) = exp(i2 ) ( ). (7)

It is now easy to verify that, for the  independent random variables under consideration, =  and = . Moreover, given that ( ) 1 2  in 
the immediate vicinity of = 0, if all characteristic functions ( ) happen to have a magnitude 
strictly less than 1.0 at 0, their product ( ) will rapidly decline toward zero away from 
the origin ( = 0). One can then approximate Eq.(7) as follows: ( ) exp(i2 ) [1 2 ] exp(i2 ) exp( 2 ). (8) 

The inverse Fourier transform of Eq.(8) now yields the probability density function of  as ( ) = ( 2 ) exp[ ( ) (2 )]. (9)

This is the main conclusion of the central limit theorem of probability and statistics, explaining 
why so many natural phenomena, each arising as the superposition of a large number of more or 
less independent random variables, tend to have a Gaussian probability distribution. 

3. The comb function. The function comb( ) is a periodic function of the real variable , where
each period consists of a single delta-function; that is, comb( ) = ( ). The standard
way of showing that the Fourier transform of comb( ) is comb( ) starts by truncating the tails of
the function where | | > , evaluating the Fourier transform of the truncated function, then
allowing  to rise to infinity.2,4 We thus find{ ( )} = ( ) d =  = = 1 ( ) (1 ) = sin[ (2 + 1) ] sin( ). (10)

Now, in the limit when , the function sin[ (2 + 1) ] oscillates rapidly with a 
changing , and one must carefully examine its behavior in the vicinity of =  (i.e., around the 
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points where  is an integer multiple of ), because the denominator sin( ) as well as the 
numerator are very close to zero around such points. It is not difficult to see that, in the immediate 
vicinity of each , the function approaches (2 + 1)sinc[(2 + 1)( )], where, as before, the sinc function is defined as sinc( ) = sin( ) ( ). Thus, in the limit when , the function 
appearing on the right-hand side of Eq.(1) approaches comb( ). 

An alternative way of demonstrating the same thing involves raising the function cos( ) to 
the power 2 , where  is a positive integer, then allowing  to go to infinity. In the immediate 
vicinity of = , where  is a positive, zero, or negative integer, the function cos ( ) is very 
close to 1, which makes its  power also close to 1. However, as soon as  moves away from , cos ( ) drops below zero and its  power rapidly approaches zero as . Thus, in cos ( ), we have a periodic function consisting if narrow bumps of height 1, centered at = , 
which approaches zero everywhere else when . The area under each bump is readily found 
using the method of integration by parts, as follows: cos ( ) d½½ = [1 sin ( )] cos ( )( ) d½½  = cos ( )( ) d½½ + ( ) ( )( ) ½½ cos ( ) d½½     cos ( ) d½½ = cos ( )( ) d½½ . (11)

Considering that d½½ = 1, Eq.(11) yields cos ( ) d½½ = (2 1) (2 ) . This area, 
of course, approaches zero as , because the bumps become narrower and narrower while 
their height remains fixed at 1. However, the function (2 ) cos ( ) (2 1) , whose bumps 
continually increase in height as their width shrinks with an increasing , properly represent the 
function comb( ) in the limit when . 

Next, we consider the Fourier transform of ( ) = cos ( ) = ½ + ¼ + ¼ , 
namely, ( ) = ½ ( ) + ¼ ( 1) + ¼ ( + 1). Using the convolution theorem of Fourier 
transformation,2,4 the following pattern emerges: {cos ( )} = ( ) = [ ( + 1) + 2 ( ) + ( 1)] {cos ( )} = ( ) ( ) = [ ( + 2) + 4 ( + 1) + 6 ( ) + 4 ( 1) + ( 2)] 

 {cos ( )} = ( ) ( ) ( ) = 2 ( + ). (12)

This is an array of -functions centered at = 0 and extending (symmetrically) over integer 
values of  from  to . The magnitude of the largest -function, located at = 0, is 2 2 . 
Scaling of cos ( ) by the factor (2 ) (2 1)  causes the magnitude of this central -
function to become ( )( ) × ( )! ( !)( !) = ( !)( ) × ( )!! × ( !) ( !)( !) = 1. (13)

N times 
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The adjacent -functions located at = ±1 are slightly smaller, having magnitude ( + 1). 
The next adjacent -functions located at = ±2 are a bit smaller, at ( 1) ( + 1) ( + 2), 
and so on. It should thus be clear that, as  and the function (2 ) cos ( ) (2 1)  
approaches comb( ), its Fourier transform, a tapered array of 2 + 1 delta-functions centered at = 0, approaches comb( ). 

4. The Fourier series. Many textbooks on Fourier transform theory begin by introducing the
Fourier series, associated with periodic functions, as a first step toward discussing the Fourier
integral for an arbitrary function ( ). However, the reverse approach of starting with the Fourier
integral ( ) = ( ) d , then specializing to the case of periodic functions, has certain 
merits. Let ( ) represent a single period, confined to the interval ( , + ], of the periodic 
function ( ). Recalling that comb( ) is a periodic array of unit -functions located at = , where the integer  could be positive, zero, or negative, one may write ( ) =comb( ) ( ). The convolution theorem2,4 now yields ( ) = comb( ) ( ) = ( ) [ ( )]. (14)

Thus, the Fourier transform of a periodic function consists of an array of equi-spaced -
functions (located at = ), where the amplitude of the  delta-function is given by ( ) = ( ) exp( i2 ) d . (15)

The inverse Fourier transform now yields the Fourier series of the periodic function, as follows: ( ) = { ( )} = ( ) [ ( )] d  = ( ) exp(i2 ). (16)

In the special case when ( ) is real-valued, Eq.(15) yields ( ) = ( ). Consequently,

 ( ) = (0) + 2 Re[ ( )] cos(2 ) Im[ ( )] sin(2 )= + cos(2 ) + sin(2 ). (17)

In the above equation, = (0) = ( )d , (17a)= 2 Re[ ( )] = 2 ( ) cos(2 ) d , (17b)= 2 Im[ ( )] = 2 ( ) sin(2 ) d . (17c)

In this way, the Fourier series coefficients of a periodic function ( ) of period , are obtained 
as the normalized sampled values ( ) of the Fourier transform ( ) of a single period ( ), in accordance with Eq.(16). Alternatively, if ( ) happens to be real-valued, the Fourier 
coefficients are derived from the sine and cosine transforms of ( ), in accordance with Eqs.(17). 
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5. The Shannon-Nyquist Sampling theorem. In modern digital signal processing, electronic
communication, and information storage, analog waveforms are sampled at regular intervals, then
converted to a digital format.2,4 The Fourier transform ( ) of the waveform (or signal) under
consideration, namely, ( ), is said to be bandlimited if ( ) turns out to be negligible outside the
frequency interval ( , ). Under such circumstances, multiplying ( ) with the sampling
function comb( ), namely, an array of unit -functions at regular intervals = , creates a
sampled function comb( ) ( ), whose Fourier transform, comb( ) ( ), may be written
as [ ( )]. This sum over the shifted copies of ( ) by integer-multiples of 1
would preserve the information content of the original signal ( ) if the shifted copies of ( ) do
not overlap each other; that is, if 1 > 2 . In other words, the rate 1  of sampling ( ) at
regular intervals  must exceed the (two-sided) width 2  of the frequency spectrum ( ) of ( ).

During the reconstruction of the original signal ( ) from its uniformly-spaced samples ( ), 
the discretized function comb( ) ( ) is sent through a linear, shift-invariant, low-pass filter, 
whose transfer function ( ) =  rect( ) multiplies the Fourier transform of the input waveform. 
Assuming the sampling rate satisfies the aforesaid Nyquist criterion, the individual copies of ( ) 
that are present within the spectrum of the input waveform will be well-separated from each other, 
thus allowing the filter to extract the original (unshifted) copy of ( ) and perfectly reproduce the 
signal ( ) at its output. The inverse Fourier transform of ( ) is the so-called impulse-response of 
the filter, which is presently given by ( ) = sinc( ). The output ( ) of the filter, being the 
convolution between the input waveform and the impulse-response, is thus seen to be ( ) = ( )sinc[( ) ]. (18)

The function sinc( ), whose properly shifted and scaled copies reconstruct the original 
signal ( ) in accordance with Eq.(18), is known as the interpolation function.2 

6. Radiation by an oscillating magnetic point-dipole. Consider a magnetic point-dipole ,
sitting at the origin of the  coordinates in free space and oscillating at the fixed frequency .
The spatio-temporal magnetization distribution of this dipole is written as( , ) = ( ) ( ) ( ) cos( ) . (19)

Fourier transforming the above magnetization profile in four-dimensional spacetime ( , ), we find

( , ) = ( , ) (     )d d = [ ( + ) + ( )] . (20) 

The electric current-density associated with our point-dipole is ( , ) = × ( , ); here, 
 is the permeability of free space.5 The Fourier transform ( , ) = i × ( , ) of this 

current-density now yields the Fourier transform of the vector potential ( , ) produced (in the 
Lorenz gauge) by the oscillating magnetic dipole in its surrounding space, as follows:1,5 ( , ) =  ( , ) [ ( ) ] = i × ( , ) [ ( ) ]. (21)

As for the scalar potential ( , ) produced by the dipole (again, in the Lorenz gauge), we note 
that, since magnetic dipoles do not possess an electric charge, that is, ( , ) = 0, their scalar 
potential ( , ) = ( , ) [ ( ) ] is zero; here,  is the permittivity of free space.5 

Our next task is to determine the spatio-temporal distribution ( , ) of the vector potential by 
inverse Fourier transforming ( , ) as given by Eq.(21). To this end, we write 

d = d d d   
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( , ) = (2 ) ( , ) (    – )d d  = (2 )  × [ ( ) ( )]( ) (    – )d d  

= ( ) × ( )   d  

= ( ) × ( ) sin cos d d  

= ( ) [ ( ) ( )]( ) d  

= ( ) (   ) ( )[ ( )] × [ ( )] d (   ) ( )[ ( )] × [ ( )] d  

= ( ) {[1 + i( )] + [1 i( )] } = [ ( )  ( ) ( )] ( )
 
. (22)

This is neither the retarded nor the advanced vector potential at this point. To arrive at the 
retarded potential, we need to include an appropriate superposition of plane-waves that exist, 
independently of our oscillating dipole, in free space. Such plane-waves have a temporal frequency = and reside on a spherical surface of radius = in the -space.1 It is not difficult to 
guess that the desired distribution in the ( , ) space of this vacuum vector potential should be ( , ) = ½ ×  [ ( )][ ( ) ( + )]. (23)

Here, ( ± ) ensure that the vacuum potential oscillates at the frequency ; similarly, the 
confinement of the -vectors to the requisite spherical surface is guaranteed by [ ( )]. The 
term ×  is needed if the plane-waves are to comply with the Lorenz gauge, and also enforces the 

-directed orientation of the vacuum vector potential in the ( , ) space — to be confirmed shortly. 
Finally, the constant coefficient ½  is chosen to make ( , ) properly combine with our 
magnetic dipole’s vector potential given by Eq.(22). The vacuum vector potential in ( , ) space is 
now found straightforwardly by an inverse Fourier transformation of ( , ) of Eq.(23); that is, ( , ) = (2 ) ( , ) (     )d d  = (2 ) ½ ×  [ ( )][ ( ) ( + )] (     )d d  = ( ) × 2  [ ( )] sin cos d d  = ( ) [ ( )][sin( ) cos( )]d  = [ ( )  ( ) ( )] ( )

 
. (24)

d = d d d

× = sin  

2i[sin( ) cos( )] ( )  

close the contour in the upper half-plane close the contour in the lower half-plane 

  

  
  

  
  

  

× = sin  

d = d d d   

Cauchy’s theorem 
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Adding the vacuum potential of Eq.(24) to that of the magnetic dipole given by Eq.(22), we 
finally arrive at the retarded vector potential of the oscillating point-dipole, namely, ( , ) = { cos[ ( )] ( ) sin[ ( )]}  . (25) 

This is the exact solution of Maxwell’s equations for the vector potential produced by our 
magnetic point-dipole. Given that the corresponding scalar potential ( , ) equals zero, it is easy to 
verify the satisfaction of the Lorenz gauge condition + = 0.5 The electromagnetic 
fields may now be derived using ( , ) =  and ( , ) = × , as follows: ( , ) = {( ) cos[ ( )] + sin[ ( )]}  . (26)( , ) = ( ) cos[ ( )]{( ) sin[ ( )] cos[ ( )]}(2 cos + sin ). (27) 

The rate of flow of electromagnetic energy is given by the time-averaged Poynting vector, namely, ( , ) = × = . (28)

Here, = ( )½ 377  is the impedance of free space. Integrating the above rate of flow 
of energy over a spherical surface of arbitrary radius  yields the total rate of energy radiation by 
the magnetic dipole, as follows: = ( , ) 2 sin d = sin d =  

. (29)‡ 

As expected,5 the radiated power  is seen to be proportional to the square of the dipole 
moment  and the fourth power of its oscillation frequency . 

A personal note of gratitude. I am grateful to Dean James Wyant for, among many other things, 
providing an environment in which my colleagues and I could thrive, engaging in teaching and 
research without feeling pressured, and without being burdened by excessive bureaucratic concerns. 
It has been an honor to be able to call Jim my colleague (and my friend) for the past 33 years. 
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‡The convention used in this paper with regard to the magnetic fields is = + ; consequently, the magnetization 
 has the units of the -field. This means that our magnetic dipole , when considered as a small loop of area  

within the -plane that carries a current  around the -axis, has the dipole moment = . According to Eq.(19), 
the point-dipole’s magnetization  is expressed with the aid of three -functions, each having the dimensions of . 
This makes the dimensionality of  equal to that of  (i.e., henry/meter) times the dimensions of ( ) ( ) ( ), 
which amount to ampere/meter. The latter, of course, are the dimensions of the -field. 
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