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ABSTRACT  

Real-time imaging is highly desirable in image-guided radiotherapy, as it provides instantaneous knowledge of 

patient’s anatomy and motion during the treatment and enables online treatment adaptation to achieve the highest tumor 

targeting accuracy. Due to extremely limited acquisition time, only one or several X-ray projections can be acquired for 

real-time imaging, which poses a substantial challenge to localize the tumor from the scarce projections. For liver 

radiotherapy, such a challenge is further exacerbated by the diminished contrast between the tumor and the normal liver 

tissues. Here, we propose a framework combining graph neural network-based deep learning and biomechanical 

modeling to track liver tumor in real time from a single on-board X-ray projection. The liver tumor tracking is achieved 

in two steps. First, a deep learning network is developed to predict the liver surface deformation, using image features 

learned from the X-ray projection. Second, the intra-liver deformation is estimated through biomechanical modeling, 

using the liver surface deformation as the boundary condition to solve intra-liver tumor motion by finite element 

analysis. The accuracy of the proposed framework was evaluated using a dataset of 10 patients with liver cancer. The 

results show accurate liver surface registration from the graph-based neural network, which translates into accurate real-

time, fiducial-less liver tumor localization (<1.3 mm localization error).  
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1. INTRODUCTION  

The introduction of conformal radiotherapy enables high-precision dose delivery to the tumor and spares surrounding 

normal tissues, enabling treatment margin reduction, dose escalation, and improved tumor control [1]. However, internal 

anatomical motion such as respiratory or cardiac motion leads to tumor location uncertainties, and may cause the 

radiation beams to miss the tumor and damage normal tissues. Image-guided radiation therapy widely uses X-ray based 

imaging to localize the tumor before and during the treatment to maintain the delivery accuracy [2]. Real-time imaging, 

in particular, is highly desired as it can localize the tumor instantly and allow the treatment to adapt to such real-time 

changes to achieve ultimate treatment accuracy. Due to the stringent temporal resolution requirement (hundreds of 

milliseconds) of real-time imaging, the volumetric information will be severely under-sampled via current mainstream 

imaging modalities including cone-beam computed tomography (CBCT). Such a degree of under-sampling makes it 

impossible to reconstruct high-quality CBCTs using conventional methods for tumor localization. 

Due to the recent successes of deep learning (DL), several groups have proposed DL-based methods for real-time 

imaging. A few network architectures were proposed to reconstruct three-dimensional (3D) CBCT images from single-

view or orthogonal-view X-ray projections [3-5]. Such networks, however, were built on an ill-conditioned problem, 

trying to estimate high-dimensional volumetric data from a single X-ray projection. Considerable reconstruction errors 

remain, albeit much smaller than those of the conventional reconstruction algorithms. Moreover, to track tumors in real-

time, additional steps of image registration or segmentation are necessary to further localize tumors from the 

reconstructed CBCT images. This is particularly challenging for liver tumors due to the low contrast of liver tumors 

against surrounding normal liver parenchyma. 

To address the above challenges toward real-time imaging, especially for liver tumor localization, we propose a mesh 

registration-based method combining deep neural networks with biomechanical modeling. The method directly solves 
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the liver tumor motion between a prior CT/CBCT image and a single X-ray projection to localize liver tumors in real-

time, and effectively eliminates the need to reconstruct a high-quality, intermediate CBCT image prior to localization. 

Specifically, a deep graph neural network-based architecture was trained to model the correlation between patient-

specific liver boundary motion and features learned on individual X-ray projections. The trained network can then 

predict liver boundary motion from a single real-time X-ray projection. Using the predicted liver boundary motion as the 

boundary condition, we further performed finite element analysis-based biomechanical modeling of liver to solve intra-

liver tumor motion. The method adopts a deformation-driven approach that incorporates prior information to tackle the 

extreme under-sampling issue. The two-step-based registration scheme simplifies the complexity of the deep graph 

neural network with introduced domain knowledge (biomechanical modeling). Biomechanical modeling uses 

information including structure geometry, material composition and elasticity to derive physiologically and physically 

meaningful deformation, and complements the intensity information provided in the X-ray projection to further improve 

the registration and tumor localization accuracy [6]. 

The accuracy of the proposed technique was evaluated using 10 patients with liver cancer, and compared with the 

accuracy of two other techniques. The first technique uses the diaphragm as an anatomic landmark, and tracks the 

diaphragm motion directly from the on-board projections via template matching to represent liver tumor motion. The 

second technique is a principal component analysis (PCA) based method which models 3D motion into a few motion 

eigenvectors for dimension reduction and tumor tracking [7]. 

 

 
Figure 1. Workflow of the proposed method. A deep graph neural network-based model was trained to predict liver surface 

deformation vector field (DVF) from a single X-ray projection. Then a biomechanical model solves the intra-liver DVF 

using the liver surface DVF as the boundary condition for tumor localization. 

2. MATERIALS AND METHODS 

2.1 Method overview  

In this study, liver motion and liver tumor localization were solved via deformable registration between a liver mesh 

(extracted offline from a prior CT/CBCT image available before the treatment) and the liver features projected on a 

single X-ray projection (Fig. 1). The registration was achieved via two steps: (a) liver surface motion estimation via a 

deep graph neural network-based structure (Fig. 2); and (b) intra-liver motion estimation via biomechanical modeling. 

Specifically, in step (a) a patient-specific DL model was trained to predict a liver boundary deformation vector field 

(DVF) that deforms the prior liver surface mesh to match with the liver shape variations encoded in the X-ray projection. 

In step (b), a biomechanical model of the liver was built, and an intra-liver DVF was solved through finite element 

analysis using the liver boundary DVF as the boundary condition. 
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Figure 2. Overview of the deep-learning (DL) network that estimates liver boundary motion from an on-board X-ray 

projection. The network consists of two subnetworks performing feature extraction and liver boundary DVF prediction 

separately. The first subnetwork uses ResNet-50 to extract image features from an X-ray projection. The extracted 

feature maps were pooled for each node of a liver surface mesh by the perceptual feature pooling layer, based on the 

projected node coordinates on the X-ray projection. The second subnetwork, consisting of three deformation blocks, 

progressively estimates liver boundary DVFs. A deformation block comprises of a graph convolutional network (GCN) 

and a spatial transform layer. The GCN was learned to predict a liver boundary DVF based on the features extracted 

from the ResNet-50 subnetwork. A spatial transform layer deforms the prior reference mesh or the deformed liver 

surface mesh from the previous deformation block, using a GCN-predicted DVF. 

 

2.2 The deep-learning network architecture  

The network was trained to learn image features from on-board X-ray projections to predict boundary movement from 

the prior liver mesh to each on-board projection. The DL network architecture is illustrated in Fig. 2, which contains two 

subnetworks. The first subnetwork extracts image features from each on-board X-ray projection, and the extracted 

feature maps are pooled and fed into the second subnetwork for liver boundary DVF prediction. Here we used ResNet-

50 [8] as the feature extraction network. Consisting of a series of convolutional layers stacked in a residual learning 

architecture, ResNet-50 extracts encoded liver shape variations, via local and global image features contained in the X-

ray projection, and learns short- and long-range dependencies among these extracted features. These learned 

dependencies are helpful for the deformation estimation because they are shown common in respiration-induced liver 

motion. The perceptual feature pooling layer pools the ResNet-50 extracted feature maps by associating each 3D node of 

a liver surface mesh with a 2D point in the feature maps, based on the same geometry of the cone-beam projection. 

The second subnetwork comprises a series of deformation blocks that progressively deforms the liver surface mesh 

nodes based on the extracted feature maps from the first subnetwork. Each deformation block involves a graph 

convolutional network (GCN, Fig. 3) and a spatial transform layer that deforms the liver surface mesh using the GCN-

predicted DVF [9]. GCN performs graph-based convolutions that generalize the standard convolution operations to data 

structures lack of underlying Euclidean structures, such as functional networks in brain imaging. A non-Euclidean data 

structure can be represented by a weighted graph comprised of a set of vertices, edges connecting the vertices, and 

weights associated with each vertex (e.g., vertex features, DVFs, vertex-associated image features). The use of GCN is 

indicated for our problem, as the liver surface mesh nodes, the geometrical connectivity (edges) between the nodes, and 

the learned image, DVF, and vertex features associated with each node make a standard non-Euclidean data structure for 

inputs into the GCN. Using extracted image features that encode the liver shape, preceding DVFs, and learned vertex 

features from the previous block, the GCN learns to predict a liver surface DVF to further deform the surface mesh 
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deformed by the previous block. The inputs of the GCN in the first deformation block contain ResNet50-extracted image 

features and an initial DVF which was set to be zero. For each subsequent GCN, the image features were re-pooled 

based on the new node coordinates (Fig. 2), deformed via the spatial transform layer and the DVF predicted by the 

preceding block. The image features were then input into the subsequent GCN, along with the predicted surface DVF 

and the learned vertex features from the preceding block. We used a GCN of the same architecture as the G-ResNet [9], 

which is illustrated in Fig. 3. The corresponding network was modified and adapted from the Pixel2Mesh library [10]. 

The model training was driven by a loss function involving a mesh similarity loss and regularization losses that 

regularize the deformation and enforce smoothness of the boundary DVFs. 

 

 
Figure 3. Graph convolutional network (GCN). The inputs contain pooled image features from the feature extraction 

ResNet-50 subnetwork (Fig. 2), a surface DVF, and vertex features yielded from the GCN in the previous deformation 

block (if any). The GCN consists of 20 graph convolution layers that, except for the entrance and exiting layers, were 

organized in a residual learning architecture. The GCN yields a surface DVF and vertex features to feed into the 

subsequent deformation block. The inputs of the first GCN in the second subnetwork contains only image features and 

an initial surface DVF which was set to be zero. The image features were re-pooled for each GCN based on deformed 

node coordinates. The rounded box in the middle represents a residual learning module containing three graph 

convolution layers with a shortcut connection, which iterates 6 times. 

 

2.3 Biomechanical modeling 

After the deep neural network solves a liver boundary DVF to match with the liver shape features on the X-ray 

projection, the intra-liver DVF was subsequently derived using a biomechanical model. Here we used the Mooney-

Rivlin material model, which describes a hyperelastic (i.e., nonlinear elasticity) material that fits biological tissues well. 

The details of implementing the biomechanical model can be found in Ref. [6]. 

2.4 Dataset curation and augmentation 

A dataset of 10 patients with liver cancer from our institute was used to evaluate the proposed method. The study was 

approved under an institutional review boards protocol. Each patient had a contrast-enhanced four-dimensional CT set 

from treatment planning, and the CT images were binned into 10 respiratory phases (from 0% to 90%), with 0% being 

the end-of-inhale phase. The CT images were resampled to a uniform size of 256×256×128 with an isotropic resolution 

of 2 mm×2 mm×2 mm. On-board X-ray cone-beam projections were simulated from the CT images using a ray-tracing 

algorithm. We simulated projections from three angles: 0, 45, and 90 degrees. The 0- and 90-degree are for anterior-

posterior and left-right directions, respectively. 

Since each patient had only a 10-phase 4D-CT set, to generate sufficient motion variation scenarios to train the patient-

specific network and avoid overfitting, we augmented the dataset of each patient by simulating realistic respiratory 

deformations encountered in on-board liver imaging. The augmentation was based on a PCA-based motion model of 

each patient [6, 11]. We first performed deformable registrations between the reference 0% phase and the other phases to 

attain DVFs, using the open-source software package Elastix. To improve the intra-liver DVF accuracy, we applied 

biomechanical modeling to derive intra-liver DVFs, using the liver surface DVFs solved by Elastix as boundary 

conditions. We then replaced the Elastix intra-liver DVFs with the biomechanical modeling-derived intra-liver DVFs. 

PCA was subsequently performed on these high-quality DVFs of each patient to obtain patient-specific principal motion 

components. For augmentation, the coefficients of the first three principal motion components were randomly scaled to 

re-generate DVFs of various magnitudes and patterns [11]. In total, for each patient we generated 1,728 augmented 
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samples which were partitioned into training, validation, and testing sets. The partitioning was assigned according to the 

original respiratory phases of the PCA coefficients prior to the random scaling. The training set includes the samples of 

which the original PCA coefficients were from the 10% to 40% phases; the validation set includes the samples whose 

original PCA coefficients were from the 60% and 70% phases; and the testing set includes the samples whose original 

PCA coefficients were from the 50%, 80%, and 90% phases. 50% is the end-of-exhale phase that has the largest 

deformation from the 0% phase. 

2.5 Evaluation schemes 

The deformation accuracy of liver surface meshes was evaluated using the Hausdorff distance (HD) between the 

deformed and the ‘ground-truth’ target liver surface meshes extracted from the augmented dataset [12]. To evaluate the 

performance of liver tumor tracking, we manually contoured the tumors from the prior CT images at phase 0%. The 

tumor contours at 0% phase were then propagated using the augmentation DVFs (II.D.) to other augmented motion 

states, which were used as the ‘ground-truth’ to evaluate the ones deformed by our method. The accuracy of liver tumor 

tracking was evaluated by the Dice similarity score (DSC), center-of-mass error (COME), and HD. 

3. RESULTS 

 
Figure 4. (First row) Liver surface overlays between the prior and ‘ground-truth’ target meshes (left) and between the 

graph network-deformed and target meshes (right). The yellow meshes are the target meshes corresponding to the 

end-of-exhale phase after augmentation, and the red meshes correspond to the prior (left panel) and deformed (right 

panel) meshes. (Other rows) Liver surface nodes projected on X-ray projections at three projection angles. Left and 

right columns show the projected nodes corresponding to the prior and deformed surface meshes, respectively. 
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3.1 Liver deformation accuracy 

Figure 4 presents a qualitative comparison of liver surface meshes and projected nodes on X-ray projections at three 

projection angles (0, 45, and 90 degrees). The first row shows the surface mesh overlays between the prior and ‘ground-

truth’ target meshes (left panel), and between the graph network-deformed and ‘ground-truth’ target meshes (right 

panel). The prior and target meshes correspond to the end-of-inhale phase and the end-of-exhale phase (with motion 

augmentation), respectively. The other rows show the overlay of the pre- (left panel) and post-registration (right panel) 

surface mesh nodes onto the corresponding X-ray projections of the end-of-exhale phase, at three different angles. Both 

the surface mesh overlay and the node-projection overlay demonstrate high registration accuracy. 

Table 1 summarizes the mean (±s.d.) liver HDs of the proposed method and the PCA-based 2D-3D registration method 

[7]. The DL-based method results in much smaller HDs than the PCA-based 2D-3D method. 

Table 1. Mean (±s.d.) liver Hausdorff distances. 

Projection angle 

(degree) 
Prior (mm) 

Method 

DL prediction 

(mm) 

PCA-based 2D-3D 

registration (mm) 

0 

11.77±6.11 

2.99±2.42 7.27±4.18 

45 3.03±2.39 6.55±3.32 

90 3.09±2.55 6.09±2.47 

 

3.2 Liver tumor tracking accuracy 

Table 2 summarizes the mean (±s.d.) liver tumor DSCs, COMEs, and HDs of the proposed method at three projection 

angles. In addition, the results of PCA-based 2D-3D registration and diaphragm tracking are also presented in the Table 

for comparison. The diaphragm tracking is only able to localize the diaphragm in 2D from a single X-ray projection, thus 

we only used it to represent liver tumor motion along the superior-inferior (SI) direction. The COME of the diaphragm-

based method is thus only for SI direction, with 3D COME potentially being much larger. Table 2 clearly shows that the 

proposed method has the best liver tumor localization accuracy, and the performance is consistent among different 

angles. 

Table 2. Mean (±s.d.) liver tumor DSC, COME, and HD. The COME for the diaphragm-based method is for the superior-

inferior direction only (*). 

Project-ion angle 

(deg.) 
Metric Prior  

Method 

DL prediction 
PCA-based 2D-3D 

registration 

Diaphragm 

tracking 

0 

DSC 0.547±0.269 

0.895±0.112 0.789±0.205 

-- 45 0.893±0.110 0.822±0.155 

90 0.886±0.118 0.835±0.134 

0 
COME 

(mm) 
6.08± 4.40 

1.13±1.33 2.53±4.32 1.68±2.22* 

45 1.15±1.32 1.84±1.64 2.69±2.73* 

90 1.25±1.41 1.73±1.37 3.08±3.26* 

0 
HD 

(mm) 
7.24± 4.92 

2.81±1.77 3.95±5.00 

-- 45 2.86±1.77 3.17±1.81 

90 2.93±1.85 3.01±1.36 
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