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ABSTRACT 
 
 
The fundamental physics of high-field laser-matter interactions has driven ultrashort pulse generation to achieve record 
power densities of 1022 Watts per cm2 in focal spot sizes (FWHM) of 0.8 µm1. These enormous fields are generated by 
compressing longer, high energy pulses to ever shorter lengths using so-called CPA compressors.  Great care has to be taken 
to achieve such record power densities by controlling the spatio-temporal shape during pulse compression. Despite these 
remarkable experimental achievements, there have been relatively few developments on the theoretical side to derive realistic 
physical optical material models coupled to sophisticated E.M propagators. Many of the theoretical analysis tools developed 
in this emerging field of extreme nonlinear optics are restricted to oversimplified 1D models that completely ignore the 
complex vector spatio-temporal couplings occurring within such small nonlinear interaction volumes.  
 
The advent of these high power ultra-short pulsed laser systems has opened up a whole new vista of applications and 
computational challenges. The applications space spans relatively short propagation lengths of centimeters to meters to a 
target up to many kilometers in atmospheric propagation studies. The high local field intensities generated within the pulse 
can potentially lead to electromagnetic carrier wave shocking so it becomes necessary to fully resolve the optical carrier wave 
within the 3D propagating pulse envelope. High local field intensities also lead to an explosive growth of the white-light 
supercontinuum spectrum and the intensities of even remote spectral components can be high enough to generate nonlinear 
coupling to the host material. For this reason, spectrally local models of light-matter coupling are expected to fail. 
 
In this paper, we will present a fully carrier-resolved E.M. propagator that allows for few meter long propagation lengths 
while fully resolving the optical carrier wave. Our applications focus will be on the relatively low intensity regime where 
critical self-focusing collapse in air or water can lead to very strong non-paraxial ultra-broadband excitations. One reason for 
this restriction is that we do not yet have computationally feasible robust physical models for ultra-broadband excitation of 
materials where nonlinear dispersion and absorption become dominant. The propagation of terawatt femtosecond duration 
pulses in the atmosphere can be qualitatively captured by physical models that include reliable linear dispersion/absorption 
while treating the nonlinear terms as spectrally local. We will review some recent experimental results by the German-Franco 
Teramobile team  on atmospheric propagation, penetration through obscurants and remote laser induced breakdown 
spectroscopy. As a second application example will address the issue of strongly non-paraxial spectral superbroadening of 
femtosecond pulses while propagating in water – these latter nonlinear interactions generate so-called nonlinear X- and O-
waves depending on the optical carrier wavelength of the initial pulse. 
 
Keywords: Maxwell’s equations, ultrashort pulses, critical self-focusing, plasma generation, white light 
 
 
                                                                      1. INTRODUCTION 
 
Any investigation of intense ultra-short pulse propagation in nonlinear materials such as air or condensed matter will need to 
account for strong nonlinear-induced spatial distortion of the pulse as well as severe temporal compression.  For example, 
when multi-terawatt pulses propagate in air, they tend to spontaneously break-up into a chaotic sea of strongly focused light 
filaments (light strings) embedded in a broad nonlinear pulse background. Each self-focusing filament compresses violently 
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in space and time until intensities in the nonlinear focal spot reach the optical breakdown threshold. At the same time, the 
broad pulse background containing the filaments remains relatively flat. The end result is a large spatial scale separation that 
needs to be resolved.  A dilute plasma generated at the peak intensity (1013 – 1014 Watts per cm2 in air) creates a negative lens 
that counteracts the strong positive self-focusing lens and acts to return most of the energy to the broad background pedestal. 
Relatively little energy is dissipated per self-focusing event (light string creation ) thereby making the energy returned to the 
background available for further light string generation.  In this way, a highly dynamic nonlinear waveguide tends to persist 
over anomalously large distances. Accompanying light string creation is white-light supercontinuum (SC) generation, dilute 
plasma channel creation and subsequent THz emission from the plasma channel. Within a single multi-terawatt 100 fs pulse, 
one expects hundreds of such light string creation events at a point in space – moreover the onset of light string  generation 
can be controlled by pre-chirping the laser pulse. The Franco-German Teramobile group has taken the lead in the 
experimental investigation of fs TW pulse propagation in the atmosphere.  An extensive publication list of experiments of 
this group can be found at the website http://pclasim47.univ-lyon1.fr/publis.html. 
 
We present a physically self-consistent and robust 3D ultrashort pulse propagator that resolves the underlying optical carrier 
wave while enabling propagation over many meter propagation lengths. Our goal is to retain the full rigor of Maxwell's 
equations while reducing the problem complexity by constraining the model to unidirectional propagation. As our immediate 
interest is in very short intense pulse propagation with potentially large induced nonlinear polarization, we will need to 
accurately capture the very broad spectral landscape that the pulse experiences during its interaction with a host dielectric 
material. In many cases, spectral superbroadening is such that the generated bandwidth far exceeds in magnitude the 
underlying carrier frequency 1ω ω∆ << .  In this limit, we expect the classical Nonlinear Schrödinger Equation (NLS) 
propagator to fail. Many attempts have been made to derive nonlinear envelope models that go beyond NLS and we will 
discuss some of these below when we show explicitly how each can be seamlessly derived from our unidirectional pulse 
propagation equation (UPPE). 
 
Most of the pulse propagation problems in nonlinear optics are solved in one of two formulations: Either one has an initial 
condition (electric and magnetic fields) specified in all space, and the evolution is calculated along the time axis, or the initial 
condition is given as a function of local pulse time and transverse (w.r.t. propagation direction) coordinates, and the 
numerical evolution proceeds along the propagation axis. We refer to these cases as time- and z-propagated equations. 
 
The z-propagated approach is much more common in nonlinear optics simulations based on envelope equations, often related 
to NLS. The time-propagated approach is on the other hand common for solvers based on direct integration of Maxwell's 
equations. 
 
Due to space limitations, we focus in this article on the z-UPPE. The t-propagated version was originally introduced in 
reference [3]. As discussed in reference [2,3] in more detail, the time-propagated versions of UPPE are more suitable for 
tight-focusing scenarios when non-paraxial effects start to play a role. The z-propagated equations are easier to use in 
situations that allow one to neglect the longitudinal field components as sources of nonlinear material response. 
 
We write down a simplified scalar version of z-UPPE for the transverse electric field components  

 
This is the most useful form for practical calculations, and is therefore called z-UPPE in the following. The polarization 

source term ( ), ,
x yk kP zω  and current density ( ), ,

x yk kj zω  are sources driving the field 

Nonlinear Material Response 
 
In most cases, the propagation equations discussed in this chapter do not require a specific form of material response. 
However, for the sake of concreteness, as well as for discussion of numerical methods, we want to describe a generic model 
of nonlinear material response. We consider a nonmagnetic, dispersive medium with relative permittivity ε  that is a function 
of the transverse coordinates x,y and of the angular frequency ω  
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This medium specification includes any dispersive homogeneous medium such as air or water as well as structured fiber-like 
media such as photonic, microstructured and tapered optical fibers. 
 
Nonlinear effects are usually described in terms of polarization  P through the material constitutive relation: 

 0D E Pε ε= ∗ +  

The star in this formula represents a convolution integral with ε  being the linear response function corresponding to the 

frequency dependent ( ), ,x yε ω . The non-linear polarization is an ``arbitrary'' function of the electric field ( )P P E= .   

We will also include a current density that is driven by the optical field 

 ( )j j E=  

to describe interactions with plasma generated by the high-intensity optical pulse. 
 
The main physical effects that influence propagation of ultrashort, high-power light pulses in nonlinear dispersive media 
include the optical Kerr and stimulated Raman effects, free-electron generation, defocusing by the generated plasma and 
losses caused by avalanche and multiphoton ionization (MPI).  With minor modifications, models including these effects can 
be used for description of ultra-short optical pulses propagation in gases4-20, condensed bulk media21-25 and in conventional, 
microstructured, and tapered fibers26-28 as well as in ultra-thin silica ``wires''29. 
 
The optical Kerr and stimulated Raman effects cause a local modification of the optical susceptibility  

 0P Eε χ= ∆  

that responds to the history of the light intensity I: 

 ( ) ( ) ( )2

0

2 1bn n f I f R I t dχ τ τ τ
∞⎡ ⎤

∆ = − + −⎢ ⎥
⎣ ⎦

∫  

Here, f is the fraction of the delayed nonlinear response, and R(τ) is the memory function of the stimulated Raman effect. 
Parameterization by ( ) ( )sinR e ττ τ −ΓΩ∼  is often sufficient for ultrashort pulses30. This simple formula has the advantage of 

easy implementation that avoids explicit calculation of the convolution integral. Often, an even simpler, exponential memory 
function is used, ( )R e ττ −Γ∼  in simulations31. If the real memory function is sufficiently complex, a numerical convolution 

approach must be used to calculate the convolution. This is e.g. the case in silica32.  
 
Because of the potentially high intensities occurring in femtosecond pulses, free electrons are generated by MPI and 
avalanche mechanisms. Then it is necessary to account for the response of the optical field to the presence of a dilute plasma. 
Since the relevant times scales are so short, plasma diffusion and ion motion are neglected, and the free-electron density ρ is 
usually obtained as a solution to an equation of the following form14,15,30 

 ( ) 2
t aI b I cρ ρ ρ∂ = + −  

Here, I is the light intensity, a parameterizes the avalanche free-electron generation, and b(I) represents the multi photon 
ionization (MPI) rate that is a highly nonlinear function of the intensity.  The last term describes plasma recombination. More 
realistic MPI rates can be calculated using ab initio time-dependent S-matrix theory for example.  
 
We assume that the collective electron velocity v  responds to the optical field and that the total current density is governed  
by the following simple equation33 

 ( ) ( ) ( ) ( )
2

/ c
e

d e
j t t E t j t

dt m
ρ τ= −  

where cτ  is the mean time between collisions experienced by electrons. This equation is solved together with the above 

equation for ρ  to capture effects of the plasma on the propagation of the optical field, namely defocusing due to plasma and 

plasma induced losses.  
 
Losses caused by multiphoton ionization are usually incorporated as either an equivalent current34,35 or an imaginary 
susceptibility contribution that extracts from the field the energy needed for the  free-electron generation. 
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3. DERIVATION OF OTHER NONLINEAR ENVELOPE EQUATIONS 

 
Several types of unidirectional propagation equations are widely used in the nonlinear optics literature. The most important 
examples are Non-Linear Schrödinger (NLS) equation36, Nonlinear Envelope Equation37 (NEE), the First-Order Propagation 
equation35 (FOP), Forward Maxwell's equation38 (FME), and several other equations that are closely related to these. In this 
section, we provide a unified approach that will be used to derive several of the light-pulse propagation equations found in 
the literature. The main benefit of re-deriving known equations from a common starting point, namely UPPE, using the same 
method, is that it allows us to compare the physical assumptions and approximation underlying different equations. 
 
It is instructive to break the derivation procedure into several steps. As a first step, we adopt a scalar, one component 
approximation and write the UPPE in the following form: 
 
 
where 
 
 
 
is the linear field propagator in the spectral representation, and 
 
 
 
 
will be called nonlinear coupling term.  
 
In the second step, we replace K and Q by suitable approximations. In most cases they are nothing but Taylor expansions in 
frequency and in transverse wavenumber. 
 
To obtain envelope equations, one expresses the field in terms of an envelope by factoring out the carrier wave at a chosen 
reference angular frequency ωR with the corresponding wave-vector kR = K(0,0, ωR) 
 
 
A similar factorization is of course introduced for the nonlinear polarization P(x,y,z,t) as well. 
 
Step three consists of transforming the equation from the spectral- to the real-space representation. Mathematically, this is 
nothing but a Fourier transform that results in the following standard rules for differential operators: 
 
 
 
Finally, in most cases we also transform to a frame moving with a suitable group velocity such that the pulse remains close to 
the center of the computational domain. 
 
Derivation of Non-Linear Schrödinger Equation from UPPE 
 
The Nonlinear Schrödinger Equation36 (NLS) is the computational workhorse for ultrashort pulse propagation and has been 
used extensively to model atmospheric light string propagation. One characteristic feature of NLS and of other envelope type 
equations is the presence of a reference frequency.  Usually, one chooses the reference angular frequency ωR as the central 
frequency of the initial pulse, but this is not necessary.  Actually it is useful to keep in mind that ωR is to a certain extent a 
free parameter, and that the obtained results must be almost independent of its concrete choice. If a numerical simulation 
turns out to be sensitive to the choice of ωR, it means that an envelope equation is being used outside of its region of validity. 
 
Following the general procedure, we replace the K and Q ``coefficients'' with appropriate approximations. We denote by   
kR=k(ωR) the  reference wavenumber corresponding to the chosen reference frequency ωR, and take 
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This is a second-order Taylor expansion in ω-ωR and in kx, ky. 
 
In the nonlinear coupling coefficient, we neglect all variable dependencies and take its value at the reference frequency and 
zero transverse wavenumber: 
 
 
 
 
For simplicity, in NLS we only account for the instantaneous optical Kerr effect, and write the nonlinear polarization 
envelope as 
 
 
Inserting the above expressions into equations (3.1), (3.2) we obtain 
 
 
 
It is customary to normalize the envelope amplitude such that |{A}|2 = I. Using rules given by equation (3.3) we finally obtain 
the NLS equation: 
 
 
 
 
Approximating K to second order in frequency and transverse wavenumber amounts to the paraxial, and quasi-
monochromatic approximations for the linear wave propagation. The approximation in the nonlinear coupling Q also requires 
a narrow spectrum in order to be able to represent Q by a constant. 
 
Derivation of the Nonlinear Envelope Equation 
 
The Nonlinear Envelope Equation37 is a paraxial equation with some additional approximations related to chromatic 
dispersion. This equation appears to be extremely close to the paraxial version of UPPE. 
 
Once again we follow the general procedure and approximate the linear propagator by its paraxial version: 
 
 
 
 
This is essentially the second-order (paraxial) Taylor expansion in transverse wavenumber with only minor additional 
approximation. Namely, we replaced nb(ω) → nb(ωR) in the denominator of the diffraction term, and thus partly neglected the 
chromatic dispersion. 
 
Further, the first term in the above approximation, which is an exact propagation constant for a plane wave propagating along 
the z axis,  is re-expressed as a sum of its two lowest-order Taylor expansion terms plus the rest: 
 
 
where 
 
 
 
 
 
This is formally exact and can be practically implemented in the spectral domain without further approximations, but 
sometimes a finite number of series expansion terms is used to fit the linear chromatic dispersion of a medium or of a 
waveguide. What we understand under NEE in the following assumes an exact treatment of the dispersion operator. 
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Next, we approximate the nonlinear coupling term. Unlike in NLS, we preserve the frequency dependence exactly, but 
neglect the transverse wave-number dependence: 
 
 
 
Here, as in the free propagation term, we neglect the chromatic dispersion of the background index of refraction. 
 
After putting the above approximations for K and Q into the original UPPE, we obtain 
 
 
 
 
 
 
 
 
Finally, transforming into the real-space representation, we arrive at NEE 
 
 
 
 

 
 
Thus, the additional 
approximations underlying the 
NEE are paraxiality both in the 
free propagator and in the 
nonlinear coupling, and a small 
error in the chromatic 
dispersion introduced when the 
background index of refraction 
is replaced by a constant, 
frequency independent value in 
both the spatio-temporal 
correction term and in the 
nonlinear coupling term. 
 
 A partially Corrected NLS 
(PC-NLS) equation can be 
viewed as a ``simplification'' of 
NEE. It is derived from the 
UPPE in the same way, with 
one additional step. Namely, 
the following first order series 
expansion is applied in the 
correction term of the free 
propagator in equation (3.4): 
 

 
 
This approximation step is meant to 
make it easy to implement a 
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Figure 1 Spectrally-resolved far-field of the generated white-light SC showing 
wavelength and angular resolved spectrum. Left: z-UPPE. Right: PC-NLS  
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numerical solver in real space, as it results in the equation that only contains ``simple'' differential operators in the real-space 
representation: 
 
 
 
 
While it may seem that the Partially Corrected NLS is essentially NEE with a ``little more'' approximation, this equation is 
not to be recommended. Because of the arbitrary truncation of an infinite series, the dispersion properties of the linear part of 
this equation are unphysical. While the PC-NLS provides better-than-NLS approximation around the reference frequency ωR, 
its dispersion properties become rather pathological around 2 Rω ω  where its diffraction term changes sign as a 
consequence of the truncated correction factor.  Artifacts in the angular distribution of the spectrum can be observed at high 
frequencies beyond 2 Rω ω .  This is illustrated in Figure 1. Consequently, this equation is only applicable in the same 
regime as the NLS, namely when the spectrum of the pulse remains relatively narrow. 

 
 

4. LIGHT STRING GENERATION 
 
The qualitative behavior of intense pulse propagation in the atmosphere can be most transparently captured by extending the 
usual Nonlinear Schrödinger propagation model to include coupling to a simple Drüde model that describes generation of an 
electron-ion plasma9.  
 
 
 
 
 
 
 
 
The first three terms on the RHS of the first equation account for diffraction, temporal dispersion and Kerr self-focusing. The 
remaining terms in this first equation describe plasma absorption/dispersion respectively and losses due to multi-photon 
absorption. In air propagation, the order of multiphoton ionization is 7 for N2 and 8 for O2. Thus the multi-photon ionization 
is of much higher order than the Kerr self-focusing. Moreover, the refractive contribution to the plasma term is about two 
orders of magnitude greater than the absorptive term, meaning that dissipation per self-focusing event is small relative to the 
induced negative lens. The second equation is a simple Drüde model to account for free electron/ion generation through 
avalanche photo-ionization (first term in second equation) and multi-photon generation (second term). The latter term 
accounts for recombination losses. The femtosecond pulse interaction with air is so fast that avalanche ionization and 
recombination can be ignored – likewise we ignore plasma drift and diffusion processes.  
 
Multiple Filament Formation across wide pulses 
 
This first application of the z-UPPE simulator illustrates break-up of a 
high-power, wide femtosecond pulse into chaotically interacting light 
filaments. Beams that carry power far exceeding the critical self-
focusing power usually break-up transversally into multiple filaments. 
For air, Pcrit ≈ 4-5 GW suggesting that a few TW pulse could contain 
on the order of one thousand filaments – in practice, numerical 
simulations and experimental measurements indicate that about 10-
15% of the total power is concentrated in filaments (light strings) at 
one time. Figure 2 shows an experimental energy fluence profile of a 
few TW pulse creating filaments  (light strings) in air. The bright 
localized spots represent focused high-intensity light strings. To 
capture such dynamics, a fully spatially resolved simulator is needed 
that doesn't impose axial symmetry.  
 
We illustrate in Figure 3 how multiple filaments are concurrently 
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Figure 2 Experimentally measured energy fluence 
profile of a high power pulse propagating in air. [K. 
Stelmaszczyk et al. APL, 85, 3977 (2004)] 
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created at different transverse and longitudinal locations, and how they interact with the low-intensity background. It was 
first proposed in reference [17] that such an interaction is crucial for long distance propagation of high-power femtosecond 
pulses in air. The basic idea is that of dynamic exchange of energy between multiple, essentially unsynchronized and 
spatially sharply localized filament cores and the low-intensity, spatially wide pedestal of the beam.   
 
In this wide-beam simulation, the initial condition is a Gaussian pulse with a phase perturbation. The waist of the initially 
collimated Gaussian was chosen to be 5mm, the pulse duration is 500 fs, 248λ = nm, and the maximal intensity is 

14 22 10 Wm−× .  The total pulse energy is approximately 9mJ. A random phase perturbation is imposed on the pulse to initiate 
the transverse break-up of the pulse into multiple filaments (see Figure 3). We adjusted the amplitude of the perturbation such 
that it results in the filamentation onset after a few meters of propagation. The numerically computed filaments show the 
same qualitative features as the experimental measurements in Figure 2. 
 
The first stage of nonlinear self-focusing is driven by the 
smooth, large-scale profile of the pulse.  After a few meters, 
local perturbations develop into hot-spots which grow into 
high-intensity filaments. The first panel shows the overall scale 
of the input pulse with the high-intensity regions forming from 
the low-intensity background. There is practically no plasma 
formation at this propagation distance. The initial perturbations 
grow rapidly and reach intensities high enough to ionize air 
(second panel). Collapse of a filament is eventually regularized 
by plasma-induced defocusing. That causes decay of the 
filament and returns most of its energy into the low-intensity 
background. From there, new filaments grow and these 
replenishment cycles repeat with relatively modest energy 
losses to plasma generation (subsequent panels).  
 
Later in the propagation, filaments start to appear in the 
peripheral regions further from the center. This is due to less 
overall intensity and therefore slower self-focusing and growth 
of perturbations. Though it is not evident on these fluence 
pictures, later-stage filaments tend to generate less plasma than 
the ones that appear at the very beginning of the filamentation 
onset. This is the stage when the single-filament dynamic 
spatial replenishment scenario crosses over to a regime where 
replenishment energy originates in ``neighboring'' filaments 
rather than from the same one.  
 
Initial sharp spikes in the total number of generated electrons, 
associated with the onset of individual filaments, decay with 
distance. We expect the shot-to-shot fluctuation to smooth-out 
these sharp features due to randomization of the filament 
formation. The late-stage filaments are less ``organized'' than 
those created just after the self-focusing onset. Consequently, it 
takes less of the plasma generation to arrest their collapse. One can 
say that the increasing ``disorder'' in the developing composite pulse 
makes the collapse arrest due to plasma more efficient and thus contribute to the ability of the pulse to propagate over long 
distances. One can speculate, and recent experiments indicate that a regime can be eventually reached where the plasma 
generation is almost negligible. 
 
A number of recent experiments on light string propagation in air have addressed the issue of competition between SC 
generation and third harmonic generation (THG)39,40.  In a tightly (linearly) focused geometry, it has been observed that the 
spectral extent of SC generation is quite limited and a third harmonic signal can be clearly seen as a separate isolated spectral 
component. This situation falls within the classical NLO description of THG where, one can describe the fundamental and 
third harmonic waves as separate, coupled slowly varying envelopes. In a loosely focused geometry however, where the 
propagating pulse is allowed to spontaneously self-focus, the situation is very different. The onset of critical self-focusing 

Figure 3 Transverse energy fluence profiles at different 
propagation distances. White colors represent most 
intense light filaments. 

Proc. of SPIE Vol. 6261  626102-8



6

angular frequency [lO'5s]

tr
an

sv
er

se
 w

av
en

us
ib

er
 11

 O
6m

1 

  

generates explosive SC prior to the local intensity being reached where significant THG can be seen. Consequently, the SC 
spectrum rapidly swamps the THG signal. In this case one cannot think in terms of isolated envelope waves and must include 
the full electromagnetic field41.  

 
 
 
 
 
 
 
 
Figure 4 shows the spectrally resolved far-field spectra for both situations. In the tightly focused geometry, on the left panel, 
the spectrum shows a strong angular divergence (vertical axis) about the fundamental but remains essentially isolated from 
the third harmonic. The third harmonic signal contains energy concentrated on-axis and off-axis near the phase matching 
curve. The latter appears as THG emission in a concentric ring about the fundamental. The on-axis signal contains a mix of 
fundamental and THG. In the loosely focused geometry, the pulse propagates some distance in air before undergoing 
explosive critical self-focusing. At the onset of critical-self focusing, 
there is strong SC generation and the spectrum broadens dramatically. In 
fact, the SC spectrum swamps the THG signal but aligns itself 
dominantly along the THG phase matching curve. 
 
Applications of Light Strings 
 
Multi-terawatt pulses with carrier wavelength in the infra-red (λ = 800 
nm) and typically lasting for 100-200 fs have been employed by the 
Teramobile group as a novel fs Lidar system42.  Detected light using an 
imaging 2-m telescope has been observed from altitudes exceeding 20 
km vertically in the atmosphere. Direct observation in several 
wavelength bands supports filament formation at distances as far as 2 
km in the atmosphere. Moreover the beam divergence at 5 km altitude is 
smaller than expected supporting whole-beam waveguiding. The high 
local intensities accompanying light string formation lead to the 
generation of intense white-light SC – the latter has been observed 
propagating at ranges exceeding 18 km vertically in the atmosphere (see 
Figure 5). These experimental observations have created new 
perspectives for white-light Lidar (light detection and ranging).  Plasma 
channels generated with light strings have been shown to guide high-
voltage discharges between electrodes making them potential candidates 
for lightning control.  

Figure 5 White-light supecontinuum 
propagating vertically in the atmosphere. 
White dots are stars in the background. 

Figure 4 Left panel: Spectrally resolved far-field showing the spectral content of the fundamental (FF) and the 
third harmonic (TH) after propagation in a tightly focused geometry.  Dashed curve is the locus of  the dynamic 
THG phase-matching condition. Right panel: Corresponding spectrally resolved far-field for propagation in a 
loosely focused geometry. 
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Both theoretical simulations and experimental measurements indicate individual light strings and plasma channels persist 
over meter lengths. Recent experiments even suggest that plasma channels can extend up to 400 m when using multi-terawatt 
laser pulses. The high density of such light strings across a TW pulse and their chaotic generation and regeneration ensures 
that the effective propagation length is much longer. Indeed recent experimental measurements suggest that two distinct 
propagation regimes exist – an initial scenario involving relatively violent critical self-focusing collapse across the wide pulse 
with concomitant plasma generation (detected by THz emission) followed by a relatively quiescent regime where light strings 
persist longer and generate less or no plasma. This 
latter behavior has not been satisfactorily explained 
theoretically so far. 
 
Another important application scenario for light 
strings is so-called remote Laser-Induced-Breakdown-
Spectroscopy (LIBS)43.  The persistence of light 
strings and associated plasma channels over meter 
long distances and their chaotic generation and 
regeneration considerably relaxes the stringent 
focusing requirements of conventional LIBS. In the 
latter, an intense laser pulse must be focused close to 
the target – otherwise the pulse will have spread 
diffractively and no plasma can be generated. Light 
string sources provide a statistical sampling of the 
target within a single pulse and do not require special 
focusing conditions. This latter fact considerably 
extends the flexibility and range of remote LIBS for 
remote chemical identification and chemical analysis. 
The Teramobile system was used to induce ablation 
on a metal target at a distance greater than 100 m away 
– based on these results a remote LIBS detection system 
is proposed that would operate at kilometer ranges. 
Figure 6 shows a comparison of the range corrected 
signal using light strings. It is seen to be relatively insensitive to distance variation in contrast to the classical LIBS approach 
where the signal falls off rapidly beyond the linear focus. 
 
 
 

5. NONLINEAR X- AND O-WAVES IN WATER 
 
 
Weakly focused femtosecond laser pulse propagating in water can exhibit novel self-trapping over distances of a few 
centimeters. While there are many analogies with propagation in air there are importance difference also. The characteristic 
transverse size of light strings in air is limited to about a 100 µm diameter due to the onset of optical breakdown. This means 
that air propagation is mostly near-paraxial. In air propagation, dispersion is not a major player whereas it plays a prominent 
role in water. The strong interplay between transverse self-focusing compression and strong linear dispersion in water leads 
to dominant non-paraxial propagation effects.  Depending on whether the optical carrier wave of the exciting pulse is in the 
normal or anomalous region of the water dispersion, the nonlinear focusing behavior can be quite different. Water has the 
nice property that its optical properties are well characterized and hence, it provides an ideal medium for validating our UPPE 
solver.  
 
Figure 7 shows measured absorption and dispersion features of water over a broad span of wavelengths. An exciting pulse at 
527 nm will exhibit normal GVD whereas a pulse at 1100 nm experiences anomalous GVD. This particular example requires 
that the solver captures correctly the linear dispersion in a broad range of frequencies and propagation angles, and is thus an 
ideal candidate for UPPE application. Full details can be found in an earlier publication44. The dots in the right picture 
represent experimental GVD data and the continuous curve the corresponding effective dispersion of the numerical algorithm 
– in other words, the UPPE propagator captures the real physical dispersion (and absorption) over the full bandwidth shown 
in this figure.  

Figure 6 Range-corrected signal using remote LIBS 
spectroscopy on a metal target.  The continuous line is a 
simulation of classical LIBS. [K. Stelmaszczyk et al. APL, 85, 
3977 (2004)] 
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Firstly we consider a loosely focused femtosecond pulse centered at a 527~nm wavelength, propagating in a water sample. 
An appropriate combination of focusing, pulse intensity and duration results in a long filament (compared to the Rayleigh 
range corresponding to the transverse size of the beam at the water-cell entrance). The question that we want to shed light on 
in this numerical experiment is what mechanism is responsible for creation of that seemingly several centimeters long 
filament. Further, we want to know if the mechanism is universal in any way. 
 
 

 
It is important to note that what is actually observed, in experiment45,46 and in simulation47 alike, is not a ``steady-state'' self-
guided filament. Rather, we deal with a series of pulse splitting events akin to the scenario of spatial dynamical 
replenishment30 in air. In this case, however, the role of plasma as the arrestor of the self-focusing collapse is less pronounced 
compared to propagation in air. The left and center panels of Figure 8 show a series of snapshots that depict the temporal 
profile of on-axis intensity of the now quite complicated ``pulse.'' One observes several cycles consisting of formation and 
subsequent splitting of a sub-pulse in the center of the time domain. The ``daughter'' sub-pulses resulting from each pulse-

Figure 7 Left: Water absorption spectrum on a log scale. Right: Corresponding group velocity dispersion (GVD). The 
vertical lines indicate the carrier wavelength corresponding to anomalous (1100 nm) and normal (527 nm) dispersion. 

Figure 8 The left and center picture show snapshots of 1D slices through the 3D pulse at different propagation 
distances in water. The picture on the right is the spectrally-resolved far-field showing the characteristic X-feature in 
the accumulated spectrum. The dashed lines are loci of a dynamic 3-wave mixing formula. 
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split event play an important role in the formation of the spatial and temporal spectrum. Namely they are still intense enough 
to induce localized changes to the material susceptibility that in turn follow these split-off pulses and thus propagate with 
different ``group'' velocities. These material waves then act as scatterers in a three-wave mixing process that transforms the 
input optical waves into scattered ones. Linear propagation dispersion properties together with the propagation velocity of the 
material wave then determine where in the spectral space the scattered energy will accumulate. 
 
 The dashed lines in the right panel of Figure 8 represent the loci of spectral energy concentration predicted from an effective 
three-wave mixing argument. The resulting spatio-temporal spectrum of a loosely focused ultrashort pulse after propagation 
in water is shown in Figure 8 The dashed lines represent the loci where energy concentrates due to the non-linear interactions 
irrespective of the details of the underlying dynamics. The resulting central X-shaped feature is always close to the manifold 
that supports the z-invariant X-waves that propagate long distances without changing their spatio-temporal spectral shapes. In 
any normal-GVD medium, the ``theoretical X-wave'' spectrum and the ``real-pulse'' spectral concentration will be close to 
each other because of the simple landscape of chromatic dispersion in the space of frequency and transverse wavenumber. 
Thus, even highly non-stationary pulses inherit their tendency for long-distance propagation from the nonlinear X-waves. 
This global robust feature of nonlinear X-waves has been observed experimentally in recent experiments [45,46]. What is 
quite remarkable is that there appears to be a universal attracting set in the infinite-dimensional phase space that attracts all 
solutions despite the extremely chaotic spatio-temporal evolution of the underlying dynamics. It is important to recognize 
that the 1D slices in Figure 8 are not fully representative of the complex underlying spatio-temporal dynamics that these self-
trapped pulses undergo while self-trapped. 
 

 
 
By changing the central pulse wavelength to 1100 nm we access the anomalous dispersion regime of water (see Figure 7).  
Notice however that the zero dispersion cross-over to normal dispersion is much closer to this wavelength.  When a pulse is 
launched in water at this wavelength, it experiences anomalous dispersion. Hence, there is now a tendency to contract the 
pulse in both the transverse dimension (self-focusing counteracting diffraction) and in the longitudinal dimension (self-
focusing counteracting dispersion). This scenario where contraction occurs in all three dimensions is called supercritical 
collapse.  The accumulated spectrally resolved far-field spectrum now looks very different. Instead of an X-feature, one 
expects to see families of ellipses in the far-field spectrum reflecting the dominance of the 3D linear dispersion landscape.  
Because of the relative closeness of the 1100 nm wavelength to the zero dispersion cross-over point, we observe that the SC 
expands into the normal dispersion regime of the water response leading to a part X-feature at short wavelengths.  Figure 9 
shows the X-wave spectrally -resolved far-field in the left panel and the O-wave spectrally-resolved far-field in the right 
panel. The strong off-axis flow of energy in these spectra is indicative of non-paraxial behavior and, coupled with extreme 
SC generation, requires a UPPE level solver for proper resolution. 
 
 
 
 
 
 

Figure 9 Left panel: Spectrally-resolved far field for the pulse carrier wavelength in the normal dispersion regime of 
water. Right panel: Spectrally-resolved far-field for the pulse carrier wavelength in the anomalously dispersion regime. 
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     CONCLUSIONS  
 
In this article, we have presented an overview of some recent exciting experimental developments in the field of intense 
ultrashort pulse propagation effects in the atmosphere and in water.  Atmospheric light string generation and propagation 
with multi-TW 100-200 fs duration laser pulses has opened up a whole new vista of novel applications areas involving long 
distance propagation effects. We have seen that intense light strings created chaotically within the laser pulse can generate a 
remote white-light continuum spectroscopic probe in the atmosphere. They also leave behind dilute plasma channels that 
have direct use in a new form of remote LIBS spectroscopy and the latter can emit THz radiation. Of course, the atmosphere 
is not a well-controlled laboratory environment and we can only hope to get qualitative understanding of such highly 
nonlinear propagation phenomena. Some recent experimental studies of self-trapping of ultra-short laser pulses in water have 
identified some novel consequences of the coupling between diffraction, dispersion and nonlinear self-focusing. Nonlinear X-
waves, which are somewhat related to linear non-diffracting Bessel beams have been observed when the laser carrier 
wavelength is in the normal region of the water response while O-waves are observed in the anomalous dispersion region.  
 
An underlying theme of the article has been the importance of having a physically realistic theoretical description and 
numerical implementations that capture the relevant physics over the very broad spectral landscape experiencing nonlinear 
excitation. We pointed out that the famous NLS equation, when extended to account for plasma generation, can give a very 
useful qualitative description of the important physical mechanisms operative during intense ultra-short pulse propagation. 
The need for a more complete model was emphasized and we presented a carrier resolved unidirectional vector Maxwell 
propagator (z-UPPE) that allows for 3D pulse propagation over many meter distances. Full details of the alternate t-UPPE 
model are contained in references [2,3]. In addition to their computational feasibility, the UPPE models provide the first 
unified and seamless approach to deriving other envelope equation propagators in the literature. The physical approximations 
made in each envelope model are made explicit and these can be tested against the full UPPE.  
 
A significant shortcoming of all existing nonlinear EM propagation models, including vector Maxwell, are the rather naïve 
and crude material models being employed The latter are typically limited to spectrally narrow windows of the linear optical 
response even through many nonlinear optical propagation scenarios involve generation of super-broadened spectral features 
over many decades of wavelengths.  Typically, we can do a reasonably good job of extending linear response functions to 
ultra-wide bandwidth but the nonlinear response description is a completely open question. Given the complex and highly 
nonlinear nature of light interaction of materials with intense femtosecond and sub-femtosecond optical pulses, it is clear that 
there has be a significant investment of effort in deriving computationally accessible nonlinear response functions in the 
future. 
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