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Use of penalty terms in gradient-based iterative
reconstruction schemes for optical tomography
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of an appropriately defined objective function. The objective function
can be separated into a least-square-error term, which compares pre-
dicted and actual detector readings, and additional penalty terms that
may contain a priori information about the system. For the efficient
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1 Introduction measured on the boundary of the medium and some predic-
Optical tomography(OT) is a fast growing field in which tion for those measured values. Therefore the image recon-
near-infrared light is used to image the distribution of optical Struction problem may be interpreted as an optimization prob-

properties inside the human body. Optical properties of inter- Iezm in which an objective function_ is minimized. If we use the
est are, for example, the absorption coefficignt, the re- x° error norm to calculate the difference between measure-
duced écattering coe:fficiemg, or the diffusion c'oefficient ments and predictions we can define the objective function as

D=c/(3ua+3us), wherec is the speed of light in the me- (Mg g— Pg 4(2))2
dium. The instrumentation for making light transmission mea- <I>(§)=X2(§)EZ E % (1)
surements that are necessary for OT is nowadays widely s d 204 4

available*™® Furthermore, several algorithms that transform | this equation the parametéris a vector that contains the
these measurements into useful cross-sectional images haveptical properties at all positions in the medium. If the image
matured to such a degree that first clinical trials are underway, s discretized inton pixels, and each pixel can vary in both
especially in breast imagirfg™ However, a major difficulty  absorption and scattering coefficient, the vegtds of length

in OT remains that the image reconstruction problem is ill- N=2n. P, () is the predicted reading at detector locatibn
posed or underdetermined. In other words, there are manywhen light is injected at locatios. The Ps.q() values are
distributions of optical properties inside the medium under cajculated with a forward model, e.g., by solving the diffusion
investigation that lead to the same set of detector readings ongquation for the given mediufi.M 4 is the measured value

the surface of the medium. at detector positionl given a source a. The parametess 4
Depending on the underlying structure and concepts of any js 3 normalization constant.

particular reconstruction scheme, the problem of ill-posedness | the linear perturbation approach, it is assumed that we
can be approached in different ways. Most of the currently pave an estimaté, that is close to the true distributiafi In

employed reconstruction schemes fall in one of two classes, this case we can perform a Taylor expansiorPgf; around
which we refer to as the linear-perturbation approach and the /' Neglecting nonlinear terms, we obtain ’

nonlinear-gradient methotsee also Ref. 30 In both cases

the goal is to minimize the difference between intensities Ps.a(§)=Psa(&)+Psa(8)/ 9L (8~ &)
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where Jg 4= JPs ¢(£)/d is a row in the Jacobian matriX,
which is often also referred to as the weight-function matrix.
If Q is the number of source—detector paissd) andN the
number of unknowns in the problem, thdns a QXN ma-
trix. The vectorA{={— ¢, is the difference in optical prop-
erties between the estimated and actual medium gived by
Inserting Eq.(2) into Eq. (1) yields:

(&) —Js400)?
20—§,d .

(Mgg—P
C)=2 X ——— 3
Therefore, in this case, minimizing the functional in EL). is
equivalent to solving the equation

JAL=M-P=JITAL=1"(M-P), (4)

whereM andP are vectors that contain &\l 4 and P 4(&o)
values, respectively. The image reconstruction problem is to
find AZ and to determine the image given X{+¢). The
matrix J7 is the transpose of. Approaching the imaging

The question arises: what does ill-posedness mean using
the GIIR approach? In the perturbation approach ill-posedness
is identical to an ill-conditioned matri¥J. In the GIIR
scheme, which interprets image reconstruction as a multidi-
mensional minimization problem, ill-posedness means that a
global minimum is not well defined. A global minimum is not
well defined when either many minima with similar values
exist or one minimumé,,;,, which is surrounded by many
other ¢, result in almost identical objective functions. Ex-
amples of such objective functions in optical tomography
have been described, for example, by Arridg&chweiger
and Arridgé* and Hielscher et & In general, the reconstruc-
tion result will strongly depend on the initial guegs. These
phenomena are well known in the field of general optimiza-
tion theory. A typical way to overcome this problem is to add
penalty terms that provide additional constraints on the solu-
tion space. The penalty term may push the solution into the
right area of the solution space and the minimization of the
resulting objective function may provide a better-defined

problem this way, ill-posedness means that the quadratic ma-minimum. While the use of penalty terms has been studied for

trix JJ7 is ill conditioned. Therefore, the determinant of the
matrix JJ7 is almost zero and many differedi{s solve Eq.
(4). A standard way of overcoming this problem is to make
JJT diagonally dominant’2%3Obviously, this is most easily
accomplished by adding a diagonal matrix and solved

(JIT+ADHAZ=IT (M —P), (5)

wherel is the identity matrix and is usually referred to as
the regularization parameter or hyperparameter. The goal is
now to find a\ that is large enough to avoid problems en-
countered with ill-conditioned matrixes, and at the same time
small enough to not completely alter the basic relation defined
in Eq. (1). For example, Jiang et af,Paulsen and Jiarg,
and Pogue et & have derived such diagonal matrices for
optical tomography.

More recently several group&Saquib et al?} Hielscher
et al.?>2"2 Arridge and Schweiget Roy and Sevick® and
Ye et al*® have developed so called gradient based iterative
reconstructionGIIR) schemes that do not solve Edd) or
(5) to obtain an update of. Instead, starting from an initial
guess(y subsequent distributior , ; are obtained by calcu-
lating

24
15

G+ 1= Gt aAg, (6)

whereg=0®({)/ ¢ is the gradient of the objective function
[Eqg. (1)] in column vector form of lengtiN, A is anNXN
matrix, anda is a real number representing the step size in the
direction of the gradient. For the case of steepest gradient
descentA equals the identity matrix, with only ones on the

a variety of problem&®~**their use in GIIR schemes for op-
tical tomography has not been explored.

The goal of this paper is to introduce and study the effects
of various penalty functions on the reconstruction process in
OT. In particular, we seek to derive penalty function fram
priori knowledge about the systems under investigati@n.
priori knowledge is, in general, information that does not de-
pend on the difference between predicted and measured data.
For example, we know that optical properties are larger than
zero. Furthermore in the near-infrared wavelength regign
<10 cmi tandu,<100 cni'l. In addition, it is often known
how many different tissue types, and therefore how many
different optical properties, are present in the interrogated me-
dium. For example, in the brain we find cerebrospinal fluid,
gray, and white matter. If magnetic resonance imaging data
are available, one may even know the location of these tis-
sues. The questions arise: how can this additi@alriori
knowledge be appropriately cast into a penalty function and
can using this information improve image quality?

To illustrate the effects of penalty functions derived fram
priori knowledge about the system, we will focus in this work
on information regarding the composition of a given tissue
volume. We consider the following cases: First, it is assumed
that one knows than tissue types withn different optical
properties are present in the medium. However one neither
knows the location nor their respective volume fraction of any
given component in the tissue sample. Second, we will as-
sume to have prior knowledge of all tissue types present and
the volume percentage they occupy. However, just as in the

diagonal. The major advantage of GIIR algorithms over other first case, one does not know where the different tissue types
currently employed algorithms is that no inversion of a full, are located inside the medium. This latter point corresponds to
ill-conditioned Jacobian matrix is necessary to obtain an up- knowing the histogram of the medium to be reconstructed.

date A of the optical properties in the medium. In GIIR We will derive the appropriate penalty terms for both cases.

schemes a Jacobian is calculated as part of the gradient calNumerical examples that demonstrate the effect of these pen-
culation of the objective function. Once this gradient is found, alty terms on the quality of the reconstructed images are

a line minimization of the objective function along the direc- shown and discussed. Furthermore, the relationship between
tion of the gradient is performed to find the update for the penalty functions in gradient-based schemes and algebraic
optical properties. A more detailed description and discussion regularization mechanisms used in linear-perturbation

of GIIR algorithms can be found elsewhéfe®° schemes is discussed and put into context with our results.
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2 Mathematical Background

2.1 Gradient-Based Iterative Image Reconstruction

Use of Penalty Terms in Gradient-based Iterative Reconstruction

0.8

Our gradient-based iterative image reconstruction scheme has

three major componentél) Forward Model. This model is a

theory or algorithm that predicts a set of measured sigdals
given the positiong g of the light sources and the spatial
distribution of optical propertieé. In this work we use as the

0.6

ray
+—

0.4

S

\

governing equation for light propagation in tissue the time-
dependent diffusion equation dU/ot=V(DVU)
—cu,U+S.2” As optical parameters of interest we chdse
=(cua(r),D(r)). (2) Analysis SchemeHere an objective
function® is defined, which describes the difference between
the measuredV and predicted dat®. An example is the
least-square error norm, also callgtinorm, described in Eq.
(2). (3) Updating SchemeOnce the objective function is de-
fined, the task becomes to minimide This is accomplished

in two substeps. First the gradient of the objective function
d®()/d¢ is calculated by means of adjoint differentiation.
Second, given the gradient an iterative line minimization in
the direction of the gradient is performed. This step is refer-
eed to asnner iterationand consists of several forward cal- different types of tissues that are most likely to be found in
culations in which the parametefsre varied. Once the mini-  the sample under investigation. The optical properties of these
mum along the line is found, a new gradient is calculated at tissues are known within certain error margins. Areas of the
this minimum (outer iteration and another line minimization ~ reconstructed image that show any other than the expected
is performed, now along a different direction in tfiespace. optical parameters should therefore be penalized the more
These steps are repeated until a distributipis found for they differ from the expected values. Under these consider-
which ®(2) is smallest. A more detailed description of the ations we define the following penalty function:

GIIR algorithm used in this work can be found elsewh@re.
K 2
a—
1- 2 ex e iX) ) @
k=1 20'k

HereK is the number of different tissue typksn the system
S The parameten, is the most likely optical property of
tissuek, and{Z, is the reconstructed optical property at pixel
The parametel/o can be interpreted as the confidence that
a, is the exact value. Fat/oy— = (<o —0) the Gaussian
D) =xAD)+w-TI(D, 7 becom_es a delta function that_is 1 onlydf=a, and zero
otherwise. Therefore, only if,=a, does the penalty term

wherell(Z) denotes the penalty term anglis the coupling  disappear. In this case E¢B) is not continuously differen-
parameter, also often referred to as the hyperparameter. Thejaple. For any nonzero value of, there will be a range of,,
additional termwl1(¢) is designed to provide a better-defined for which the penalty term changes smoothly from 1 to 0 and
minimum in the solution space and push the gradient schemegq. (8) becomes continuously differentiable. An example is
toward more probable solutions. The latter is achieved by shown in Figure 1, wherBl" is plotted for the case that three
penalizing certain distribution that are unlikely given our  {ifferent tissue types with optical propertiBs , D,, andD5
prior information of the system under investigation. Ideally, zre present andt,=0.1 cnns  for all threeD values. The
we expectlI(Z) to constrain theN-dimensional minimum  gerjvative of this penalty function with respect to a pixel
search to a small subspace of desirable solutions. value¢, is easily calculated as

The penalty term should be continuously differentiable to
be useful in GIIR schemes. Therefore the derivative of the

0.2

0.5 1
D [cm?ns™]

Fig. 1 Example of a tissue-type penalty function IT" [Eq. (8)] that as-
sumes three different types of tissues (k=3), with D;=0.52
cm?ns™!, D,=0.92 cm?ns™ ', and D;=1.44 cm? ns™'.

2.2 Penalty Functions

The incorporation of additional knowledge about the image to
be reconstructed can be achieved by including a penalty term
into the definition of the objective function. Instead of only
trying to minimize the difference between the measurements
and predictions, as is done if the objective function equals the
x? error norm defined in Eq1), one can define the objective
function as

n'@=2

xeS

penalty term with respect to the optical properties should not Tt ) K ac—{ (A —&,)2
have any discontinuities. In general, smooth functions are =—E > “expl — ZX .9
much better suited for any gradient based minimum search. Iex k=1 o} 20y

We will address these restrictions further when we derive the
respective penalty functions.
2.2.2  Histogram Penalty Function

2.2.1  Tissue-Type Penalty Functions If not only the various types of tissue in the sample are known
In this work we seek to provide penalty functions that are but additionally their respective volume fraction, we are able
rooted in a particular kind of prior knowledge, namely the to provide a most likely histograrsl® to the reconstruction
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scheme. In general, a histogram maps theixel values of 0.8
an image represented @y (1,45, . .. .{x, - . .,{yN) ONtoL 0.7 ,-"-.,‘
discrete intervals or bins of widthA{=¢(—-¢ 4 AR
(1=1,2,...L). Therefore, the histograid(Z, ,{) associated 0.6 ' i‘ . e R
with an imageS or given set{ of optical properties is defined £ o5 iofod e 3
by the following sum over all pixelg of the image o { \ H
D 0.4 i L
£ [ ¥
K2 0.3 ’.F '|l I — S
H(Z.0=2 84,50, 1=1,...L, (10 T
XeS 0.2 / ] - S S
h 0.1 Pl ."“/-" Hﬁz \\"
where : SN Nl e
0 - e,
5 1 for §_1<ix=<{( 0 0.5 12 1 1.5 2
= . 11 -
(6 80=10  otherwise 11 D [em®ns™]

The sum in Eq(10) sorts all pixel valueg, into L bins of the Fig. 2 Ideal hiSEOgrfzn H;s for tissue that contains 15% tissuitype 1

histogram, since the-function only contributes to the sum (D;=Q-520 cmns 1), 75% tissue type 2 (D, =0.92 cm” ns” ), and

H(Z,,) if a pixel lies within the corresponding interval. 10% tissue type 3 (D;=1.44 cm” ns™') and smoothed histogram H.
. Hist . The smoothed histogram results from convolution of Hs with a Gauss-

We can now define a penalty terth™, which evaluates . X . -
; . ; ian function of width 0=0.15 [Eq. (10) and Eq. (13)].

the histogranH (¢, ,{) of a reconstructed image relative to the

expected histograri®(¢,,&). Here we choose thg? error

norm between both functions and define the penalty term

identical. Hence, le{H%H,) be accurate histograni&q.
(Ho(Z)—H())? 12 (10)] and)(H;,H) be their convolution with Eq(13) (with
HO(Z) ' nonzeroo), then

L
hist_ 2  _

where we use the short notatiet({)) for H(¢Z,,0).
However, if the definition of the delta function in EG.1)

is considered, we observe that E42) is not continuously L )

differentiable, which makes it unsuitable for gradient based Consequently, by minimizing the” norm between two

schemes. To overcome this problem we consider a represenb!Urred histograms, we are at the same time minimizing the

tation of the delta function that uses a Gaussian differenge between the .underlying sharp histograms. H.ow-
ever, using the blurred histogram provides us with a continu-

_\2 ously differentiable penalty term that is better suited for use in
F{_(gl gx) ) (13)

Hl=H; & Ho=H. (15)

8L, = lim J1/(2mwo?)ex

o—0

gradient based minimization schemes.

20?

With this we can calculate the derivative and obtain 2923 The Hyperparameter

JIThist L (HO(Z) —H(Z)) (L— &) Each of the penalty functions has to be couplt_ed to the error
== 212702 ! 7351 5x norm x2 [Eq. (1)] with a hyperparameter. This parameter
2N1(2mo*) . . . i
29 =1 HO(Z) a? fixes the relative strength of the penalty term in the minimi-
) zation scheme and describes the confidence one has that the
(&= &% 14 additional information is correct. A good starting point is to
xexp — 242 ' (14) choosew in a way which ensures that the gradients of both the

_ _ _ _ x? term and the penalty function are of similar magnitude. If
where we omitted the lim. By choosing an appropriate non- we interpret they? term and thewII term as potentials, the

Y= (16)

zero value foro and calculating the image histogram using  derivativesdx?/d¢ and wdll/9¢ can be interpreted as two
Eq. (10 and the penalty term Eq12), we obtain a penalty  forces that pull the pixel values in certain directions. By de-
term that is continuously differentiable and can be applied fining a new hyperparameter
within the GIIR framework. Typically, we chosg so that the
singular peaks overlappdgdee Figure Pto avoid forbidden )
intervals in the target histograi®. ﬂ‘ / ‘&L

Using Eq.(13) with a nonzeras to generatéH(¢,) results ag al’
in a smoothing operation on the histogram and is equivalent to
convolving the exact histogram with a Gaussian of wiglttit we can adjust the relative strength of these forces, originating
may seem that the histogram thus obtained is blurred to anfrom the y? potential and thdl potential, respectively. Ify
extent that spoils the goal of reconstructing only certain types =1 then o equals the ratio of the gradients and both forces
of tissue. However, since we perform the same convolution are equally strong. Ify>1 the force due to penalty function
on both, the histograril of the reconstructed image and the Il is stronger than due to the? term, and ify<1 the 2
target histograntH® before they are compardéq. (12)] be- term has a stronger influence. We will later see how the
comes minimal, if and only if the unconvolved functions are choice ofy influences the reconstruction results.
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Fig. 3 (a) Composition of two-dimensional example problem. An
8X8 cm domain is divided into a 40X 40 grid. Source positions are
indicated with white circles and detectors with black circles. (b) Re-
construction without penalty functions after 20 iterations. The initial
guess for the first iteration is a homogeneous medium with D=1

cm™?ns .

3 Results

3.1 Problem Setup

To test how assumptions about the medium can improve the

image reconstruction we consider the following example.
Given is an8X 8 cm medium that contains two objedtsee
Figure 3. The speed of light in this medium is considered to
be constantc=22 cmns®. The optical properties of the
background medium are given by,=0.1 cm'?, ui=8
cm ! (=D=c/(3ua+3ul)=0.905 cnins ). The optical
properties of the inclusions are given py=0.1 cm %, u&
=14.0 cm! (=D=0.520 cdns 1), and u,=0.1 cm %,
us=5.0 cm?! (=D=1.438 cmns 1), respectively. The
medium is discretized into 40X 40 mesh withAx=0.2 cm.

Use of Penalty Terms in Gradient-based Iterative Reconstruction

(a)

(b)

15
P
=
=110
2
(]

0.5

(c) (d)

Fig. 4 Image reconstruction with tissue-type penalty terms [Eq. (8)]
after 20 iterations. The initial guess is a homogeneous medium with
D=1 cm™': (a) y=0.02, (b) y=0.08, (c) y=0.1, and (d) y=0.005
n?, where n equals the number of iterations.

the image error this way allows us to quantify the improve-
ment in image quality when using a penalty function as com-
pared to not using a penalty function. A valuelgt=1 indi-
cates that the penalty term yields neither an improvement nor
degradation in image quality.

3.2 Reconstruction Without Penalty Terms

Four sources, one centered at each side, surround the mediunwe first use the GIIR algorithm to minimize th:ez term

For each source 20 detector readings are available, four o

At=0.01 ns. Therefore we havdx20Xx 100=8000 data
points. From these points thg term is calculated as
2

M5 Psa(D,a)

2_
=2
S Pts,d(D!/J’a)

whereD and u, are vectors of lengtd0Xx 40= 1600, which
contain the diffusion and absorption coefficients throughout
the medium.

To quantify the quality of the image reconstruction, we
furthermore define the relative image error as

N target wpy 2
1 [ (D29 D"P)
le= N 2 tnget vco 2!
n (Dn - Dn p)
whereN is the number of pixels in the imag®,>'is the
correct diffusion coefficient at pixel position, D" is the
diffusion coefficient at pixel position reconstructed without

using a penalty term, anB" is the diffusion coefficient at
pixel positionn reconstructed using a penalty term. Defining

22

d t

(17

(18

Mwithout any additional penalty terms. As the initial guess we
each side and one on each corner. These detector reading y p v g

were simulated by using the time-dependent finite-difference
forward model and adding Gaussian noise with a signal to
noise ratio of 30 db to the result. The simulated detector read-
ings each consists of 100 time-dependent fluence rates, with

thoseD=1 cn? ns ! andu,=0.1 cni * for all points in the
medium. Therefore, we only reconstruct the diffusion coeffi-
cient D in this case, since the initial guess fag equals the
original value. The result of the reconstruction after 20 itera-
tions is shown in Figure ). The general features of
the medium are recovered. The diffusion coeffici@ntin

the larger inclusion is increased whil® in the smaller
inclusion is decreased. The minimal and maximal valuds of

in the heterogeneities ard®=0.50 cntns ' and D
=1.31 cnt ns !, respectively. These values differ by ap-
proximately 10% from the original value. The sharp edges are
not recovered and the inclusions appear blurred, as is typical
for optical tomography. We found that as long as the initial
guesses are within 20% of the averdgealue of the image,
the reconstruction results are very similar. When inifial
guesses are chosen that are outside the rande wélues
present in the image strong artifacts start to appear.

3.3 Reconstruction with Tissue-Type Penalty Term

Next we consider how these results can be improved when the
information is used that only three different tissues types with
given optical properties are present in the medilyg. (8)].
However, no knowledge is assumed about where these three
different regions are located, or how much of the image vol-
ume is occupied by a particular tissue type. Figures-4(c)
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Fig. 5 Image error /¢ as function of the hyperparameter vy for the tissue
type prior IT" (open circles) and histogram prior TI" (filled circles).
Both curves are normalized to 1 for the result of the reconstruction
without penalty term (y=0).

Fig. 6 Image reconstruction with histogram penalty terms [Eq. (12)]

show reconstructions obtained with the penalty tdiith for after 20 iterations. The initial guess is a homogeneous medium with
three different parameterg. In this example we chosB; D=1 cm™":(a) y=0.2, (b) y=0.5, (c) y=1.0, and (d) y=10".

=0.520 cmins !, D,=0.92 cntns!, and D;=1.44
cn? ns L. Furthermore, we set the width of the Gaussians to objects become more localized and show plateaus of constant
a=0.1 cnfns™ ! [Eq. (8)]. The initial guess is a homoge- D values. Fory=0.5 we observe increasingly sharp bound-
neous medium witD=1 cn? ns ! andu,=0.1 cm ®. Re- aries separating the heterogeneities from the background me-
constructions were terminated after 20 iterations. It can be dium. Although their shape does not exactly match the origi-
seen that the penalty term has an effect on the imageyfor nal objects they reflect the correct size or rather volume
=0.02[Figure 4a)]. Increasingy to 0.08 does produce better fraction of these objects, as enforced by the histogram prior.
results[Figure 4b)], however, a further increase tg=0.1 Furthermore, the reconstructdd values remain constant
yields reconstructions with almost constdhtvalues across  across most of the areas covered by the cubes, rather than
the entire imagéFigure 4c)]. All pixel values are close to the  showing a pronounced peak, as observed without the penalty
background valu® =0.92 cnt ns L. Figure 5 shows the de-  term. This allows for a much better extraction of the absolute
pendence of the image errbg on the parametey. It can be optical parameters from the reconstruction. As the strength of
seen that only for a small region 601<y<0.1 does the the prior is increased further, we observe only a weak depen-
image quality improvelg<1). For all other valuesy>0.1 dence of the image quality op[Figures 5, 6¢c) and 6d)]. For
the image error is larger than without the penalty tefim large values ofy, the reconstruction tends to exaggerate sharp
>1). edges and produces artifacts, while sacrificing the correct

Rather than keeping fixed for all iterations, one can also  shape of the objects. As expected, the diffusion coefficient
change this parameter dynamically. Figutd)dshows the re- eventually assumes one of the three values imposed by the
sult of increasingy with the number of iterations, so that histogram. In Figure @), the prior information is weighted
y=0.005n2. After 25 iterations both the location ariaival- 10° stronger than thg? term, so that fitting the image’s his-
ues of the inclusions are correctly recovered. Deviations be- togram to the prediction becomes the main objective. Never-
tween the reconstruction and the original image are on the theless we still obtain reasonably good agreement with the
order of single pixels, and the image error is relatively small original image.

4 Discussion

3.4 Reconstruction with Histogram Prior In general we found that the effectiveness of a penalty term
Next, we consider the case where we have knowledge aboutdepends as much on the right choice of the penalty term as on
the different tissue types in the medium and in addition know the right choice of the hyperparameter, which adjusts the in-
their respective volume fractions. Therefore, we assume to fluence of the penalty term during the reconstruction process.
have knowledge about the histogram of the cross-sectional The results for the tissue-type penalty terfh$ show that an
image of the tissue sample. Figure&)6-6(d) show recon- improvement in the reconstruction result can only be obtained
structed images using the histogram prior with increasing hy- for a relatively small range of hyperparametdi3.01<~y
perparametery. As in previous cases, the initial guess is a <0.1). For values ofy<<0.01,the additional penalty term has
homogeneous medium witP=1 cn? ns'! and u,=0.1 no effect, while fory>0.1the quality of the reconstruction is
cm™ L. Choosingy<0.1 does not result in a significant im-  actually worse than without penalty function. Invoking the
provement of the reconstruction and yields images similar to earlier discussed interpretation of thé term and penalty
the unbiased case=0 [Figure 3b)]. For y=0.2 the two term as potentials and there derivatives as forces, we see that
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if yis chosen too strong the tissue-type penalty term traps all
pixel values in the minimum closest to the initial gué&s

=1 cnfns %, Figure 1. Forces due to thg? term are too
weak to lift a pixel out of the valley centered aroum
=0.92 cntns L.

convergence of the GIIR scheme witH'-type penalty terms,
as shown in Figure (4l). Giving only little weight to the pen-
alty term in the early stages of the reconstruction process
allows the algorithm to find areas with increased or decreased &
values ofD based on information from thg? term. Increas-
ing the weight of the penalty term later in the reconstruction Fig- 7 Image reconstruction starting from nonhomogeneous initial
process leads to a sorting of each pixel in one of the three guess. Hlst.ogram .of |r.1|t|a| guess equals that of the target medium,
o o however pixels with different D are randomly placed: (a) reconstruc-
potential V_ve"S of t_he penalty term. However, even the use tion without penalty term; (b) result with histogram penalty term (y
of a dynamically adjusted penalty term depends strongly on _g 5)
the appropriate choice of the initial value pfand the rate at
which it is increased. One is forced to find these parameters
empirically for each particular reconstruction problem. The
same drawback was previously encountered for total variation
minimization penalty term¢see Ref. 1], the exact image was used as input, so that during the first
The histogram penalty termE"™' provides good recon- jteration I[1"S'=0 is already minimal. The hyperparameter
struction results for ally>0.01. Surprisingly even the very  was set to QFigure 7a)] and 0.5[Figure 7b)], respectively.
large y= 10° provides a good reconstruction. The information \While for both cases the two objects are somewhat recovered,
contained in the histogram prevents the scheme from converg-many of the initial single pixels at wrong positions remain,
ing toward singular solutions, such as trapping all pixels at the even when the histogram prior is switched [figure 7b)].
same value oD. If more and more pixels assume only one of Qverall the image quality is much poorer than starting from a
the expected values, the force acting on them diminishes andhomogenous initial guess. In general, we found that starting
eventually becomes repulsive. Pixel values are pushed byyith a homogeneous guess provides better images than start-
penalty-term forces to alternative values to fit the overall his- ing with a wrong heterogeneous initial guess.
ftogram distribution. When the histogram of the recons'Fructed While the presented examples only show one type of me-
image approaches the “true” histogram the force acting on gjym, similar results have been obtained for a variety of dif-
individual pixels d|m|n|sE_es and eventually becomes zero. At farently structured media. The main results, namely that addi-
the global minimum ofl 1" we may change single pixel val-  ionaj a priori information can be expressed in appropriate
ues without increasing the penalty, by raising and lowering penajty terms, and that more information leads to better re-
several pixels simultaneously. This is different in the scheme 4structions and less sensitivity to a “correct” hyperparam-
that uses the tissue-type penalty tdith. To interchange two g1y v, is of general validity. Another example is shown in
pixel values that are already located at the bottom of tWO rigre 8 where instead of two compact elliptical inhomoge-
different potential valley;(Flgure 3, one always ngedg 8 neities two curved lines with different diffusion coefficient
force that pushes each pixel value over the potential hill in- cross adx 4 cm medium. The medium is discretized into a

between. ; ; i
X =0. .
The weak dependence of the reconstructionycand the 4040 mesh withAx=0.1 cm. The optical properties oflthe

. B ASEae -
fact that sensible results are still obtained as the penalty termbackground arr?% g'Y?” bwa—o.l cm -, ps=8 cm -,
becomes dominant, are important features of the histogram,(:>D%O'905 ¢ .ns ), while the Opflfal p,ropertles otihe
regularization. This makes it a very stable method to incorpo- nclusions are glverjlby,u,a:0.2 cm =, /‘Sf113'0,cm
rate additional information into the reconstruction process. (:>Dl:0-556 cnns ), f‘”d ma=0.05 cm=, pg=4.5
However, the full histogram information may not always be CM - (=D=1.61 cnins ), respectively. The initial guess
available, and only the tissue-type penalty term, which con- for all reconstructions i®=1.0 cnf ns™*. Figure 8a) shows
tain less information, may have to be used. the original image and Figure¢t8, 8(c), and &d) provide the

An additional effect of applying the histogram penalty reconstruction results after 40 iterations without a penalty
function is a faster conversion of the reconstruction algorithm. term, with tissue-type penalty term, and histogram penalty
Typically only 20 iterations are necessary to produce qualita- t€rm, respectively. Again we can see how penalty terms im-
tively correct images, compared to approximately 50 itera- prove the image quality and that the use of more information

tions without this prior information. As we increaseto val- leads to better results. The tissue-type penalty term only leads
ues>1, as little as 10 iterations suffice to produce the sharply to improved images foy<<1.0, while the histogram penalty
contrasted results shown in Figuredp term can be applied with a much wider range yWalues.

Given that the target histogram is known, one could be What type of penalty functions and choices of hyperparam-
tempted to start with an image that has the right histogram. eters will be most suitable for various other applications such
Therefore, rather than using a homogenous medium as theas optical tomographic imaging of the brain, breast, limb,
initial guess, one could chose a heterogeneous image as th¢oint, and other body parts remains to be determined for each
initial guess, which has the correct volume fraction of certain case. Here we have limited ourselves to the derivation of the
tissue types. In Figures(@ and 1b), a scrambled version of  appropriate framework for such studies.
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Fig. 8 Example of reconstruction of two curved lines after 40 itera-
tions. The initial guess is a homogeneous medium with D=1
cm? ns™': (a) original medium, (b) reconstruction without penalty
term (y=0), (c) reconstruction with tissue-type penalty term [Eq. (8),
v=0.8)], and (d) reconstruction with histogram penalty term [Eq.

(12), y=0.8].

Finally, it is interesting to compare the penalty term ap-
proach of gradient based schemes, with regularization
schemes employed in the linear-perturbation approaele
Sec. ). It can be shown that the minimization of the func-
tional in Eq. (7), which contains they? term as well as a
penalty termw - 11, is equivalent to solving a matrix equation
for A of the formt?:30:32

(JIT+AR)AZ=I" (M —P(0)— wIl’ (), (19

wherell’ is the derivative of the penalty term with respect to
the distribution of optical propertie§(r). The matrixR is
given by

110 JPIL(Y) JIL(L)
381981 3L19¢; 3L19¢N
d*11(0) JPIL(Y) JIL(L)
R=\ ozl FIES Iidln
d211(0) J*11(0) J*11(0)
a4 2ANI2S INIdN

(20)
For the tissue-type penalty term we obtain
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52Htt(§)

(Rﬁ)ijzm

K
:kgl {1/of—(ay— )% oy}

(a—¢)? o
Xexy{—Tﬁ' for i=]j
=0 for i#j. (21)

Therefore,(R“)ij has only entries on the diagonal, which
means that no local coupling between pixels occurs. Adding
this matrix toJJ" always will make Eq(19) diagonally domi-
nant, if we choose the parametesufficiently large.

For the histogram penalty function we obtain:

&2Hhi5t(§) _[
aLiaL;

2B% (L= ¢)
HO(¢) ot
p( (L= L)+ (- )?
xXexp —

20?

A it+Bi
A

for i=j

(R™);j= for i#j

i
with

L
Ai,jzz

I=1

|

. _i 2/3(H°(§.>—H<g.>>(i_ (@—4)2)
i'i_|:1 HO({|) o2 o
[( (§|_§i)2>
Xexp —————
202

where 8= \1/(2m7d?).

Therefore,(R");; has nondiagonal entries, which means
that coupling between pixels occurs. However, calculating
RMst for the examples used in this work, we find that the
values of diagonal elements are in general 3 orders of magni-
tude higher than the values of nondiagonal elements. There-
fore, adding either the tissue-type or histogram penalty func-
tion to they? term in a GIIR scheme, can also be interpreted
as adding diagonally dominant matrices to the ill-conditioned
matrix JJ7 obtained in the linear perturbation approach to the
image reconstruction problem.

The advantage of the penalty-term approach in GIIR
schemes over regularization schemes employed in linear per-
turbation methods seems to be that penalty terms have an
immediate physical interpretation. Even though useful regu-
larizers can obviously be derived without the concept of pen-
alty terms as shown for example by Pogue et%the concept
of penalty terms may provide an intuitive conduit through
which we can incorporate additional information into the re-
construction process. Since penalty terms can be considered
as potentials that bias the® potentials according to our prior
knowledge about the system they may supply more insight
into the underlying physical assumptions about the system to
be reconstructed. Furthermore, matrix diagonality as de-
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