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Use of penalty terms in gradient-based iterative
reconstruction schemes for optical tomography
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Abstract. It is well known that the reconstruction problem in optical
tomography is ill-posed. In other words, many different spatial distri-
butions of optical properties inside the medium can lead to the same
detector readings on the surface of the medium under consideration.
Therefore, the choice of an appropriate method to overcome this
problem is of crucial importance for any successful optical tomogra-
phic image reconstruction algorithm. In this work we approach the
problem within a gradient-based iterative image reconstruction
scheme. The image reconstruction is considered to be a minimization
of an appropriately defined objective function. The objective function
can be separated into a least-square-error term, which compares pre-
dicted and actual detector readings, and additional penalty terms that
may contain a priori information about the system. For the efficient
minimization of this objective function the gradient with respect to the
spatial distribution of optical properties is calculated. Besides present-
ing the underlying concepts in our approach to overcome ill-
posedness in optical tomography, we will show numerical results that
demonstrate how prior knowledge, represented as penalty terms, can
improve the reconstruction results. © 2001 Society of Photo-Optical Instrumen-
tation Engineers. [DOI: 10.1117/1.1352753]
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1 Introduction
Optical tomography~OT! is a fast growing field in which
near-infrared light is used to image the distribution of optical
properties inside the human body. Optical properties of inter
est are, for example, the absorption coefficientma , the re-
duced scattering coefficientms8 , or the diffusion coefficient
D5c/(3ma13ms8), wherec is the speed of light in the me-
dium. The instrumentation for making light transmission mea-
surements that are necessary for OT is nowadays widel
available.1–6 Furthermore, several algorithms that transform
these measurements into useful cross-sectional images ha
matured to such a degree that first clinical trials are underway
especially in breast imaging.7–30 However, a major difficulty
in OT remains that the image reconstruction problem is ill-
posed or underdetermined. In other words, there are man
distributions of optical properties inside the medium under
investigation that lead to the same set of detector readings o
the surface of the medium.

Depending on the underlying structure and concepts of an
particular reconstruction scheme, the problem of ill-posednes
can be approached in different ways. Most of the currently
employed reconstruction schemes fall in one of two classes
which we refer to as the linear-perturbation approach and th
nonlinear-gradient method~see also Ref. 30!. In both cases
the goal is to minimize the difference between intensities
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measured on the boundary of the medium and some pre
tion for those measured values. Therefore the image rec
struction problem may be interpreted as an optimization pr
lem in which an objective function is minimized. If we use th
x2 error norm to calculate the difference between measu
ments and predictions we can define the objective function

F~z!5x2~z![(
s

(
d

~Ms,d2Ps,d~z!!2

2ss,d
2

. ~1!

In this equation the parameterz is a vector that contains the
optical properties at all positions in the medium. If the ima
is discretized inton pixels, and each pixel can vary in bot
absorption and scattering coefficient, the vectorz is of length
N52n. Ps,d(z) is the predicted reading at detector locationd,
when light is injected at locations. The Ps,d(z) values are
calculated with a forward model, e.g., by solving the diffusi
equation for the given medium.27 Ms,d is the measured value
at detector positiond given a source ats. The parameterss,d
is a normalization constant.

In the linear perturbation approach, it is assumed that
have an estimatez0 that is close to the true distributionz. In
this case we can perform a Taylor expansion ofPs,d around
z0 . Neglecting nonlinear terms, we obtain

Ps,d~z!5Ps,d~z
0
!1]Ps,d~z!/]z•~z2z0!

5Ps,d~z0!1Js,dDz, ~2!
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Hielscher and Bartel
whereJs,d5]Ps,d(z)/]z is a row in the Jacobian matrixJ,
which is often also referred to as the weight-function matrix.
If Q is the number of source–detector pairs(s,d) andN the
number of unknowns in the problem, thenJ is a Q3N ma-
trix. The vectorDz5z2z0 is the difference in optical prop-
erties between the estimated and actual medium given byz.
Inserting Eq.~2! into Eq. ~1! yields:

F~z!5(
s

(
d

~Ms,d2Ps,d~z0!2Js,dDz!2

2ss,d
2

. ~3!

Therefore, in this case, minimizing the functional in Eq.~1! is
equivalent to solving the equation

JDz5M2P⇔JJTDz5JT~M2P!, ~4!

whereM andP are vectors that contain allMs,d andPs,d(z0)
values, respectively. The image reconstruction problem is t
find Dz and to determine the image given by~Dz1z!. The
matrix JT is the transpose ofJ. Approaching the imaging
problem this way, ill-posedness means that the quadratic ma
trix JJT is ill conditioned. Therefore, the determinant of the
matrix JJT is almost zero and many differentDzs solve Eq.
~4!. A standard way of overcoming this problem is to make
JJT diagonally dominant.17,30,31Obviously, this is most easily
accomplished by adding a diagonal matrix and solved

~JJT1lI !Dz5JT~M2P!, ~5!

whereI is the identity matrix andl is usually referred to as
the regularization parameter or hyperparameter. The goal
now to find al that is large enough to avoid problems en-
countered with ill-conditioned matrixes, and at the same time
small enough to not completely alter the basic relation define
in Eq. ~1!. For example, Jiang et al.,18 Paulsen and Jiang,17

and Pogue et al.32 have derived such diagonal matrices for
optical tomography.

More recently several groups~Saquib et al.,24 Hielscher
et al.,25,27,28Arridge and Schweiger,26 Roy and Sevick,29 and
Ye et al.33! have developed so called gradient based iterative
reconstruction~GIIR! schemes that do not solve Eqs.~4! or
~5! to obtain an update ofz. Instead, starting from an initial
guessz0 subsequent distributionszk11 are obtained by calcu-
lating

zk115zk1aAg, ~6!

whereg5]F(z)/]z is the gradient of the objective function
@Eq. ~1!# in column vector form of lengthN, A is an N3N
matrix, anda is a real number representing the step size in the
direction of the gradient. For the case of steepest gradien
descentA equals the identity matrix, with only ones on the
diagonal. The major advantage of GIIR algorithms over othe
currently employed algorithms is that no inversion of a full,
ill-conditioned Jacobian matrix is necessary to obtain an up
date Dz of the optical properties in the medium. In GIIR
schemes a Jacobian is calculated as part of the gradient ca
culation of the objective function. Once this gradient is found,
a line minimization of the objective function along the direc-
tion of the gradient is performed to find the update for the
optical properties. A more detailed description and discussio
of GIIR algorithms can be found elsewhere.24–30
184 Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2
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The question arises: what does ill-posedness mean u
the GIIR approach? In the perturbation approach ill-posedn
is identical to an ill-conditioned matrixJJT. In the GIIR
scheme, which interprets image reconstruction as a mul
mensional minimization problem, ill-posedness means tha
global minimum is not well defined. A global minimum is no
well defined when either many minima with similar value
exist or one minimumzmin , which is surrounded by many
other z, result in almost identical objective functions. Ex
amples of such objective functions in optical tomograp
have been described, for example, by Arridge,30 Schweiger
and Arridge34 and Hielscher et al.35 In general, the reconstruc
tion result will strongly depend on the initial guessz0 . These
phenomena are well known in the field of general optimiz
tion theory. A typical way to overcome this problem is to a
penalty terms that provide additional constraints on the so
tion space. The penalty term may push the solution into
right area of the solution space and the minimization of
resulting objective function may provide a better-defin
minimum. While the use of penalty terms has been studied
a variety of problems,36–44 their use in GIIR schemes for op
tical tomography has not been explored.

The goal of this paper is to introduce and study the effe
of various penalty functions on the reconstruction process
OT. In particular, we seek to derive penalty function froma
priori knowledge about the systems under investigationA
priori knowledge is, in general, information that does not d
pend on the difference between predicted and measured
For example, we know that optical properties are larger th
zero. Furthermore in the near-infrared wavelength regionma

,10 cm21 andms8,100 cm21. In addition, it is often known
how many different tissue types, and therefore how ma
different optical properties, are present in the interrogated
dium. For example, in the brain we find cerebrospinal flu
gray, and white matter. If magnetic resonance imaging d
are available, one may even know the location of these
sues. The questions arise: how can this additionala priori
knowledge be appropriately cast into a penalty function a
can using this information improve image quality?

To illustrate the effects of penalty functions derived froma
priori knowledge about the system, we will focus in this wo
on information regarding the composition of a given tiss
volume. We consider the following cases: First, it is assum
that one knows thatn tissue types withn different optical
properties are present in the medium. However one nei
knows the location nor their respective volume fraction of a
given component in the tissue sample. Second, we will
sume to have prior knowledge of all tissue types present
the volume percentage they occupy. However, just as in
first case, one does not know where the different tissue ty
are located inside the medium. This latter point correspond
knowing the histogram of the medium to be reconstruct
We will derive the appropriate penalty terms for both cas
Numerical examples that demonstrate the effect of these
alty terms on the quality of the reconstructed images
shown and discussed. Furthermore, the relationship betw
penalty functions in gradient-based schemes and algeb
regularization mechanisms used in linear-perturbat
schemes is discussed and put into context with our result
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Use of Penalty Terms in Gradient-based Iterative Reconstruction
2 Mathematical Background

2.1 Gradient-Based Iterative Image Reconstruction
Our gradient-based iterative image reconstruction scheme h
three major components.„1… Forward Model.This model is a
theory or algorithm that predicts a set of measured signalsU
given the positionsr s of the light sources and the spatial
distribution of optical propertiesz. In this work we use as the
governing equation for light propagation in tissue the time-
dependent diffusion equation ]U/]t5¹(D¹U)
2cmaU1S.27 As optical parameters of interest we chosez
5(cma(r ),D(r )). „2… Analysis Scheme.Here an objective
functionF is defined, which describes the difference between
the measuredM and predicted dataP. An example is the
least-square error norm, also calledx2 norm, described in Eq.
~1!. „3… Updating Scheme.Once the objective function is de-
fined, the task becomes to minimizeF. This is accomplished
in two substeps. First the gradient of the objective function
dF(z)/dz is calculated by means of adjoint differentiation.
Second, given the gradient an iterative line minimization in
the direction of the gradient is performed. This step is refer-
eed to asinner iterationand consists of several forward cal-
culations in which the parametersz are varied. Once the mini-
mum along the line is found, a new gradient is calculated a
this minimum~outer iteration! and another line minimization
is performed, now along a different direction in thez space.
These steps are repeated until a distributionz is found for
which F~z! is smallest. A more detailed description of the
GIIR algorithm used in this work can be found elsewhere.27

2.2 Penalty Functions
The incorporation of additional knowledge about the image to
be reconstructed can be achieved by including a penalty term
into the definition of the objective function. Instead of only
trying to minimize the difference between the measurement
and predictions, as is done if the objective function equals th
x2 error norm defined in Eq.~1!, one can define the objective
function as

F~z!5x2~z!1v•P~z!, ~7!

whereP~z! denotes the penalty term andv is the coupling
parameter, also often referred to as the hyperparameter. Th
additional termvP~z! is designed to provide a better-defined
minimum in the solution space and push the gradient schem
toward more probable solutions. The latter is achieved by
penalizing certain distributionsz that are unlikely given our
prior information of the system under investigation. Ideally,
we expectP~z! to constrain theN-dimensional minimum
search to a small subspace of desirable solutions.

The penalty term should be continuously differentiable to
be useful in GIIR schemes. Therefore the derivative of the
penalty term with respect to the optical properties should no
have any discontinuities. In general, smooth functions are
much better suited for any gradient based minimum search
We will address these restrictions further when we derive the
respective penalty functions.

2.2.1 Tissue-Type Penalty Functions
In this work we seek to provide penalty functions that are
rooted in a particular kind of prior knowledge, namely the
s

e

.

different types of tissues that are most likely to be found
the sample under investigation. The optical properties of th
tissues are known within certain error margins. Areas of
reconstructed image that show any other than the expe
optical parameters should therefore be penalized the m
they differ from the expected values. Under these consid
ations we define the following penalty function:

P tt~z!5 (
xPS

S 12 (
k51

K

expS 2
~ak2zx!

2

2sk
2 D D . ~8!

HereK is the number of different tissue typesk in the system
S. The parameterak is the most likely optical property of
tissuek, andzx is the reconstructed optical property at pixelx.
The parameter1/sk can be interpreted as the confidence th
ak is the exact value. For1/sk→` (⇔sk→0) the Gaussian
becomes a delta function that is 1 only ifzx5ak and zero
otherwise. Therefore, only ifzx5ak does the penalty term
disappear. In this case Eq.~8! is not continuously differen-
tiable. For any nonzero value ofsk there will be a range ofzx
for which the penalty term changes smoothly from 1 to 0 a
Eq. ~8! becomes continuously differentiable. An example
shown in Figure 1, whereP tt is plotted for the case that thre
different tissue types with optical propertiesD1 , D2 , andD3
are present andsk50.1 cm2 ns21 for all threeD values. The
derivative of this penalty function with respect to a pix
valuezx is easily calculated as

]P tt~z!

]zx
52 (

k51

K
ak2zx

sk
2

expS 2
~ak2zx!

2

2sk
2 D . ~9!

2.2.2 Histogram Penalty Function
If not only the various types of tissue in the sample are kno
but additionally their respective volume fraction, we are a
to provide a most likely histogramH0 to the reconstruction

Fig. 1 Example of a tissue-type penalty function P tt [Eq. (8)] that as-
sumes three different types of tissues (k53), with D150.52
cm2 ns21, D250.92 cm2 ns21, and D351.44 cm2 ns21.
Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2 185
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scheme. In general, a histogram maps theN pixel values of
an image represented byz5(z1 ,z2 , . . . ,zx , . . . ,zN) onto L
discrete intervals or bins of width Dz l5z l2z l 21
( l 51,2, . . . ,L). Therefore, the histogramH(z l ,z) associated
with an imageSor given setz of optical properties is defined
by the following sum over all pixelsx of the image

H~z l ,z![(
xPS

d~z l ,zx!, l 51, . . . ,L, ~10!

where

d~z l ,zx![H 1 for z l 21,zx<z l

0 otherwise
. ~11!

The sum in Eq.~10! sorts all pixel valueszx into L bins of the
histogram, since thed-function only contributes to the sum
H(z l ,z) if a pixel lies within the corresponding interval.

We can now define a penalty termPHist, which evaluates
the histogramH(z l ,z) of a reconstructed image relative to the
expected histogramH0(z l ,z). Here we choose thex2 error
norm between both functions and define the penalty term

Phist[xH0,H
2

5(
l 51

L
~H0~z l !2H~z l !!2

H0~z l !
, ~12!

where we use the short notationH(z l) for H(z l ,z).
However, if the definition of the delta function in Eq.~11!

is considered, we observe that Eq.~12! is not continuously
differentiable, which makes it unsuitable for gradient based
schemes. To overcome this problem we consider a represe
tation of the delta function that uses a Gaussian

d~z l ,zx!5 lim
s→0

A1/~2ps2!expS 2
~z l2zx!

2

2s2 D . ~13!

With this we can calculate the derivative and obtain

]Phist

]zx
52(

l 51

L

2A1/~2ps2!
~H0~z l !2H~z l !!

H0~z l !

~z l2zx!

s2

3expS 2
~z l2zx!

2

2s2 D , ~14!

where we omitted the lim. By choosing an appropriate non-
zero value fors and calculating the image histogram using
Eq. ~10! and the penalty term Eq.~12!, we obtain a penalty
term that is continuously differentiable and can be applied
within the GIIR framework. Typically, we choses, so that the
singular peaks overlapped~see Figure 2! to avoid forbidden
intervals in the target histogramH0.

Using Eq.~13! with a nonzeros to generateH(z l) results
in a smoothing operation on the histogram and is equivalent t
convolving the exact histogram with a Gaussian of widths. It
may seem that the histogram thus obtained is blurred to a
extent that spoils the goal of reconstructing only certain type
of tissue. However, since we perform the same convolution
on both, the histogramH of the reconstructed image and the
target histogramH0 before they are compared@Eq. ~12!# be-
comes minimal, if and only if the unconvolved functions are
186 Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2
-

identical. Hence, let(Hd
0,Hd) be accurate histograms@Eq.

~10!# and (H0,H) be their convolution with Eq.~13! ~with
nonzeros!, then

Hd
05Hd ⇔ H05H. ~15!

Consequently, by minimizing thex2 norm between two
blurred histograms, we are at the same time minimizing
difference between the underlying sharp histograms. Ho
ever, using the blurred histogram provides us with a conti
ously differentiable penalty term that is better suited for use
gradient based minimization schemes.

2.2.3 The Hyperparameter
Each of the penalty functions has to be coupled to the e
norm x2 @Eq. ~1!# with a hyperparameter. This paramet
fixes the relative strength of the penalty term in the minim
zation scheme and describes the confidence one has tha
additional information is correct. A good starting point is
choosev in a way which ensures that the gradients of both
x2 term and the penalty function are of similar magnitude.
we interpret thex2 term and thevP term as potentials, the
derivatives]x2/]z and v]P/]z can be interpreted as two
forces that pull the pixel values in certain directions. By d
fining a new hyperparameter

g5Uv]P

]z
UY U]x2

]z
U, ~16!

we can adjust the relative strength of these forces, origina
from the x2 potential and theP potential, respectively. Ifg
51 then v equals the ratio of the gradients and both forc
are equally strong. Ifg.1 the force due to penalty function
vP is stronger than due to thex2 term, and ifg,1 the x2

term has a stronger influence. We will later see how
choice ofg influences the reconstruction results.

Fig. 2 Ideal histogram Hd for tissue that contains 15% tissue type 1
(D150.520 cm2 ns21), 75% tissue type 2 (D250.92 cm2 ns21), and
10% tissue type 3 (D351.44 cm2 ns21) and smoothed histogram H.
The smoothed histogram results from convolution of Hd with a Gauss-
ian function of width s50.15 [Eq. (10) and Eq. (13)].



Use of Penalty Terms in Gradient-based Iterative Reconstruction
Fig. 3 (a) Composition of two-dimensional example problem. An
838 cm domain is divided into a 40340 grid. Source positions are
indicated with white circles and detectors with black circles. (b) Re-
construction without penalty functions after 20 iterations. The initial
guess for the first iteration is a homogeneous medium with D51
cm22 ns21.
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3 Results

3.1 Problem Setup
To test how assumptions about the medium can improve th
image reconstruction we consider the following example.
Given is an838 cm medium that contains two objects~see
Figure 3!. The speed of light in this medium is considered to
be constantc522 cm ns21. The optical properties of the
background medium are given byma50.1 cm21, mS858
cm21 (⇒D5c/(3ma13ms8)50.905 cm2 ns21). The optical
properties of the inclusions are given byma50.1 cm21, mS8
514.0 cm21 (⇒D50.520 cm2 ns21), and ma50.1 cm21,
mS855.0 cm21 (⇒D51.438 cm2 ns21), respectively. The
medium is discretized into a40340 mesh withDx50.2 cm.
Four sources, one centered at each side, surround the mediu
For each source 20 detector readings are available, four o
each side and one on each corner. These detector readin
were simulated by using the time-dependent finite-difference
forward model and adding Gaussian noise with a signal to
noise ratio of 30 db to the result. The simulated detector read
ings each consists of 100 time-dependent fluence rates, wi
Dt50.01 ns. Therefore we have4320310058000 data
points. From these points thex2 term is calculated as

x25(
s

(
d

(
t

S Ms,d
t 2Ps,d

t ~D,ma!

Ps,d
t ~D,ma!

D 2

, ~17!

whereD andma are vectors of length4034051600,which
contain the diffusion and absorption coefficients throughou
the medium.

To quantify the quality of the image reconstruction, we
furthermore define the relative image error as

I E[
1

N (
n

N A ~Dn
target2Dn

wp!2

~Dn
target2Dn

wop!2
, ~18!

whereN is the number of pixels in the image,Dn
target is the

correct diffusion coefficient at pixel positionn, Dn
wop is the

diffusion coefficient at pixel positionn reconstructed without
using a penalty term, andDn

wp is the diffusion coefficient at
pixel positionn reconstructed using a penalty term. Defining
.
n
s

-
h

the image error this way allows us to quantify the improv
ment in image quality when using a penalty function as co
pared to not using a penalty function. A value ofI E51 indi-
cates that the penalty term yields neither an improvement
degradation in image quality.

3.2 Reconstruction Without Penalty Terms
We first use the GIIR algorithm to minimize thex2 term,
without any additional penalty terms. As the initial guess
choseD51 cm2 ns21 andma50.1 cm21 for all points in the
medium. Therefore, we only reconstruct the diffusion coe
cient D in this case, since the initial guess forma equals the
original value. The result of the reconstruction after 20 ite
tions is shown in Figure 3~b!. The general features o
the medium are recovered. The diffusion coefficientD in
the larger inclusion is increased whileD in the smaller
inclusion is decreased. The minimal and maximal values oD
in the heterogeneities areD50.50 cm2 ns21 and D
51.31 cm2 ns21, respectively. These values differ by ap
proximately 10% from the original value. The sharp edges
not recovered and the inclusions appear blurred, as is typ
for optical tomography. We found that as long as the init
guesses are within 20% of the averageD value of the image,
the reconstruction results are very similar. When initialD
guesses are chosen that are outside the range ofD values
present in the image strong artifacts start to appear.

3.3 Reconstruction with Tissue-Type Penalty Term
Next we consider how these results can be improved when
information is used that only three different tissues types w
given optical properties are present in the medium@Eq. ~8!#.
However, no knowledge is assumed about where these t
different regions are located, or how much of the image v
ume is occupied by a particular tissue type. Figures 4~a!–4~c!

Fig. 4 Image reconstruction with tissue-type penalty terms [Eq. (8)]
after 20 iterations. The initial guess is a homogeneous medium with
D51 cm21: (a) g50.02, (b) g50.08, (c) g50.1, and (d) g50.005
n2, where n equals the number of iterations.
Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2 187



Hielscher and Bartel
Fig. 5 Image error IE as function of the hyperparameter g for the tissue
type prior P tt (open circles) and histogram prior Phist (filled circles).
Both curves are normalized to 1 for the result of the reconstruction
without penalty term (g50).
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show reconstructions obtained with the penalty termP tt for
three different parametersg. In this example we choseD1
50.520 cm2 ns21, D250.92 cm2 ns21, and D351.44
cm2 ns21. Furthermore, we set the width of the Gaussians to
sk50.1 cm2 ns21 @Eq. ~8!#. The initial guess is a homoge-
neous medium withD51 cm2 ns21 andma50.1 cm21. Re-
constructions were terminated after 20 iterations. It can be
seen that the penalty term has an effect on the image forg
50.02@Figure 4~a!#. Increasingg to 0.08 does produce better
results@Figure 4~b!#, however, a further increase tog50.1
yields reconstructions with almost constantD values across
the entire image@Figure 4~c!#. All pixel values are close to the
background valueD50.92 cm2 ns21. Figure 5 shows the de-
pendence of the image errorI E on the parameterg. It can be
seen that only for a small region of0.01,g,0.1 does the
image quality improve(I E,1). For all other valuesg.0.1
the image error is larger than without the penalty term(I E

.1).
Rather than keepingg fixed for all iterations, one can also

change this parameter dynamically. Figure 4~d! shows the re-
sult of increasingg with the number of iterationsn, so that
g50.005n2. After 25 iterations both the location andD val-
ues of the inclusions are correctly recovered. Deviations be
tween the reconstruction and the original image are on th
order of single pixels, and the image error is relatively small
(I E50.18).

3.4 Reconstruction with Histogram Prior
Next, we consider the case where we have knowledge abo
the different tissue types in the medium and in addition know
their respective volume fractions. Therefore, we assume t
have knowledge about the histogram of the cross-sectiona
image of the tissue sample. Figures 6~a!–6~d! show recon-
structed images using the histogram prior with increasing hy
perparameterg. As in previous cases, the initial guess is a
homogeneous medium withD51 cm2 ns21 and ma50.1
cm21. Choosingg,0.1 does not result in a significant im-
provement of the reconstruction and yields images similar to
the unbiased caseg50 @Figure 3~b!#. For g>0.2 the two
188 Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2
t

l

objects become more localized and show plateaus of cons
D values. Forg50.5 we observe increasingly sharp boun
aries separating the heterogeneities from the background
dium. Although their shape does not exactly match the or
nal objects they reflect the correct size or rather volu
fraction of these objects, as enforced by the histogram pr
Furthermore, the reconstructedD values remain constan
across most of the areas covered by the cubes, rather
showing a pronounced peak, as observed without the pen
term. This allows for a much better extraction of the absol
optical parameters from the reconstruction. As the strengt
the prior is increased further, we observe only a weak dep
dence of the image quality ong @Figures 5, 6~c! and 6~d!#. For
large values ofg, the reconstruction tends to exaggerate sh
edges and produces artifacts, while sacrificing the cor
shape of the objects. As expected, the diffusion coeffici
eventually assumes one of the three values imposed by
histogram. In Figure 6~d!, the prior information is weighted
106 stronger than thex2 term, so that fitting the image’s his
togram to the prediction becomes the main objective. Nev
theless we still obtain reasonably good agreement with
original image.

4 Discussion
In general we found that the effectiveness of a penalty te
depends as much on the right choice of the penalty term a
the right choice of the hyperparameter, which adjusts the
fluence of the penalty term during the reconstruction proce
The results for the tissue-type penalty termsP tt show that an
improvement in the reconstruction result can only be obtain
for a relatively small range of hyperparameters(0.01,g
,0.1). For values ofg,0.01,the additional penalty term ha
no effect, while forg.0.1 the quality of the reconstruction is
actually worse than without penalty function. Invoking th
earlier discussed interpretation of thex2 term and penalty
term as potentials and there derivatives as forces, we see

Fig. 6 Image reconstruction with histogram penalty terms [Eq. (12)]
after 20 iterations. The initial guess is a homogeneous medium with
D51 cm21:(a) g50.2, (b) g50.5, (c) g51.0, and (d) g5106.
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Use of Penalty Terms in Gradient-based Iterative Reconstruction
if g is chosen too strong the tissue-type penalty term traps a
pixel values in the minimum closest to the initial guess(D
51 cm2 ns21, Figure 1!. Forces due to thex2 term are too
weak to lift a pixel out of the valley centered aroundD
50.92 cm2 ns21.

Choosing the hyperparameter dynamically can improve th
convergence of the GIIR scheme withP tt-type penalty terms,
as shown in Figure 4~d!. Giving only little weight to the pen-
alty term in the early stages of the reconstruction proces
allows the algorithm to find areas with increased or decrease
values ofD based on information from thex2 term. Increas-
ing the weight of the penalty term later in the reconstruction
process leads to a sorting of each pixel in one of the thre
‘‘potential’’ wells of the penalty term. However, even the use
of a dynamically adjusted penalty term depends strongly on
the appropriate choice of the initial value ofg and the rate at
which it is increased. One is forced to find these parameter
empirically for each particular reconstruction problem. The
same drawback was previously encountered for total variatio
minimization penalty terms~see Ref. 17!.

The histogram penalty termsPhist provides good recon-
struction results for allg.0.01. Surprisingly even the very
largeg5106 provides a good reconstruction. The information
contained in the histogram prevents the scheme from converg
ing toward singular solutions, such as trapping all pixels at the
same value ofD. If more and more pixels assume only one of
the expected values, the force acting on them diminishes an
eventually becomes repulsive. Pixel values are pushed b
penalty-term forces to alternative values to fit the overall his-
togram distribution. When the histogram of the reconstructed
image approaches the ‘‘true’’ histogram the force acting on
individual pixels diminishes and eventually becomes zero. A
the global minimum ofPhist we may change single pixel val-
ues without increasing the penalty, by raising and lowering
several pixels simultaneously. This is different in the scheme
that uses the tissue-type penalty termP tt. To interchange two
pixel values that are already located at the bottom of two
different potential valleys~Figure 1!, one always needs a
force that pushes each pixel value over the potential hill in-
between.

The weak dependence of the reconstruction ong and the
fact that sensible results are still obtained as the penalty term
becomes dominant, are important features of the histogram
regularization. This makes it a very stable method to incorpo
rate additional information into the reconstruction process
However, the full histogram information may not always be
available, and only the tissue-type penalty term, which con
tain less information, may have to be used.

An additional effect of applying the histogram penalty
function is a faster conversion of the reconstruction algorithm
Typically only 20 iterations are necessary to produce qualita
tively correct images, compared to approximately 50 itera-
tions without this prior information. As we increaseg to val-
ues@1, as little as 10 iterations suffice to produce the sharply
contrasted results shown in Figure 6~d!.

Given that the target histogram is known, one could be
tempted to start with an image that has the right histogram
Therefore, rather than using a homogenous medium as th
initial guess, one could chose a heterogeneous image as t
initial guess, which has the correct volume fraction of certain
tissue types. In Figures 7~a! and 7~b!, a scrambled version of
l

-

d

e
e

the exact image was used as input, so that during the
iteration Phist50 is already minimal. The hyperparameterg
was set to 0@Figure 7~a!# and 0.5@Figure 7~b!#, respectively.
While for both cases the two objects are somewhat recove
many of the initial single pixels at wrong positions rema
even when the histogram prior is switched on@Figure 7~b!#.
Overall the image quality is much poorer than starting from
homogenous initial guess. In general, we found that star
with a homogeneous guess provides better images than s
ing with a wrong heterogeneous initial guess.

While the presented examples only show one type of m
dium, similar results have been obtained for a variety of d
ferently structured media. The main results, namely that ad
tional a priori information can be expressed in appropria
penalty terms, and that more information leads to better
constructions and less sensitivity to a ‘‘correct’’ hyperpara
eter g, is of general validity. Another example is shown
Figure 8 where instead of two compact elliptical inhomog
neities two curved lines with different diffusion coefficien
cross a434 cm medium. The medium is discretized into
40340 mesh withDx50.1 cm. The optical properties of the
background are given byma50.1 cm21, mS858 cm21,
(⇒D50.905 cm2 ns21), while the optical properties of the
inclusions are given byma50.2 cm21, mS8513.0 cm21

(⇒D50.556 cm2 ns21), and ma50.05 cm21, mS854.5
cm21 (⇒D51.61 cm2 ns21), respectively. The initial guess
for all reconstructions isD51.0 cm2 ns21. Figure 8~a! shows
the original image and Figures 8~b!, 8~c!, and 8~d! provide the
reconstruction results after 40 iterations without a pena
term, with tissue-type penalty term, and histogram pena
term, respectively. Again we can see how penalty terms
prove the image quality and that the use of more informat
leads to better results. The tissue-type penalty term only le
to improved images forg,1.0, while the histogram penalty
term can be applied with a much wider range ofg values.
What type of penalty functions and choices of hyperpara
eters will be most suitable for various other applications su
as optical tomographic imaging of the brain, breast, lim
joint, and other body parts remains to be determined for e
case. Here we have limited ourselves to the derivation of
appropriate framework for such studies.

Fig. 7 Image reconstruction starting from nonhomogeneous initial
guess. Histogram of initial guess equals that of the target medium,
however pixels with different D are randomly placed: (a) reconstruc-
tion without penalty term; (b) result with histogram penalty term (g
50.5).
Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2 189
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Fig. 8 Example of reconstruction of two curved lines after 40 itera-
tions. The initial guess is a homogeneous medium with D51
cm2 ns21: (a) original medium, (b) reconstruction without penalty
term (g50), (c) reconstruction with tissue-type penalty term [Eq. (8),
g50.8)], and (d) reconstruction with histogram penalty term [Eq.
(12), g50.8].
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Finally, it is interesting to compare the penalty term ap-
proach of gradient based schemes, with regularization
schemes employed in the linear-perturbation approach~see
Sec. I!. It can be shown that the minimization of the func-
tional in Eq. ~7!, which contains thex2 term as well as a
penalty termv•P, is equivalent to solving a matrix equation
for Dz of the form17,30,32

~JJT1lR!Dz5JT~M2P~z!!2vP8~z!, ~19!

whereP8 is the derivative of the penalty term with respect to
the distribution of optical propertiesz(r ). The matrix R is
given by

R[1
]2P~z!

]z1]z1
•••

]2P~z!

]z1]z j
•••

]2P~z!

]z1]zN

A � A � A

]2P~z!

]z i]z1
•••

]2P~z!

]z i]z j
•••

]2P~z!

]z i]zN

A � A � A

]2P~z!

]zN]z1
•••

]2P~z!

]zN]z j
•••

]2P~z!

]zN]zN

2 .

~20!

For the tissue-type penalty term we obtain
190 Journal of Biomedical Optics d April 2001 d Vol. 6 No. 2
~Rtt! i j 5
]2P tt~z!

]z i]z j

5 (
k51

K

$1/sk
22~ak2z i !

2/sk
4%

3expS 2
~ak2z i !

2

2sk
2 D for i 5 j

50 for iÞ j . ~21!

Therefore,(Rtt) i j has only entries on the diagonal, whic
means that no local coupling between pixels occurs. Add
this matrix toJJT always will make Eq.~19! diagonally domi-
nant, if we choose the parameterl sufficiently large.

For the histogram penalty function we obtain:

~Rhist! i j 5
]2Phist~z!

]z i]z j
5 HAi ,i1Bi ,i

Ai , j

for i 5 j
for iÞ j

with

Ai , j5(
l 51

L
2b2

H0~z l !

~z l2z i !~z l2z j !

s4

3expS 2
~z l2z i !

21~z l2z j !
2

2s2 D
Bi ,i5(

l 51

L 2b~H0~z l !2H~z l !!

H0~z l !
S 1

s2 2
~z l2z i !

2

s4 D
3expS 2

~z l2z i !
2

2s2 D
whereb5A1/(2ps2).

Therefore,(Rhist) i j has nondiagonal entries, which mea
that coupling between pixels occurs. However, calculat
Rhist for the examples used in this work, we find that t
values of diagonal elements are in general 3 orders of ma
tude higher than the values of nondiagonal elements. Th
fore, adding either the tissue-type or histogram penalty fu
tion to thex2 term in a GIIR scheme, can also be interpret
as adding diagonally dominant matrices to the ill-condition
matrix JJT obtained in the linear perturbation approach to t
image reconstruction problem.

The advantage of the penalty-term approach in G
schemes over regularization schemes employed in linear
turbation methods seems to be that penalty terms have
immediate physical interpretation. Even though useful re
larizers can obviously be derived without the concept of p
alty terms as shown for example by Pogue et al.,32 the concept
of penalty terms may provide an intuitive conduit throug
which we can incorporate additional information into the r
construction process. Since penalty terms can be consid
as potentials that bias thex2 potentials according to our prio
knowledge about the system they may supply more insi
into the underlying physical assumptions about the system
be reconstructed. Furthermore, matrix diagonality as
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Use of Penalty Terms in Gradient-based Iterative Reconstruction
manded in the linear-perturbation approach to regularization
is clearly not the only factor to get reasonable reconstruction
results. As shown in this work, the choice of a good hyperpa
rameter is very critical, and much more work needs to be don
to identify robust schemes for finding appropriate hyperpa
rameters.

5 Summary
In this study we addressed the problem of ill-posedness of th
image reconstruction problem in optical tomography. Ill-
posedness is caused by the fact that different spatial distribu
tions of optical properties inside the medium can lead to simi
lar detector readings on the surface of the medium. The
question arises as to how can one nevertheless find the corre
distribution of optical properties inside the medium from mea-
surements on the surface of the medium. In this work we
approach the problem within a gradient-based iterative imag
reconstruction~GIIR! scheme. Using this scheme the image
reconstruction problem is interpreted as an optimization prob
lem in which an appropriately defined scalar objective func-
tion is minimized using the gradient of the objective function
with respect to the distribution of optical properties. In this
context ill-posedness is reflected by the absence of a uniqu
global minimum. To overcome this problem we added penalty
terms that are derived froma priori information about the
system to the commonly used least-square-error term, whic
compares numerically predicted and actual detector reading

Specifically we derived and tested so-called tissue-type
penalty terms and histogram-penalty terms. The tissue-typ
penalty term is derived from the knowledge that a fixed num-
ber of different tissues are present in the medium. The optica
properties of these tissues are known within certain error mar
gins. If a pixel in the reconstructed image takes on a value
that is different from the expected value, a penalty is added t
the objective function. The larger the difference the larger is
the penalty. The histogram penalty term is derived from the
knowledge of the exact histogram of the correct image. There
fore, in addition to the knowledge about the number of differ-
ent tissue types, one also knows their respective volume frac
tions in the image.

Performing numerical studies we found that both types o
penalty terms can improve the image quality as well as the
convergence rate of the iterative image reconstruction pro
cess. However, a crucial variable is the coupling or hyperpa
rameter that adjusts the relative strength of the penalty term
with respect to the least-square-error term. The tissue-typ
penalty term only provides image improvement for a narrow
range of hyperparameters. If the hyperparameter is not chose
correctly the addition of this penalty term can have a detri-
mental effect on the image quality. On the other hand, the
histogram-penalty term is much less sensitive to the righ
choice of the hyperparameter and in almost all cases leads
improved reconstruction results.

Finally, we compared the penalty terms derived for the
gradient-based iterative image reconstruction scheme, wit
regularization schemes employed in the linear-perturbatio
approach. We showed that both tissue-type and histogram
penalty terms lead to diagonally dominate matrixes in the
linear-perturbation approach.
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