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Abstract. For a given diagnostic problem, important considerations
are the relative performances of the various optical biopsy techniques.
A comparative evaluation of fluorescence, diffuse reflectance, com-
bined fluorescence and diffuse reflectance, and Raman spectroscopy
in discriminating different histopathologic categories of human breast
tissues is reported. Optical spectra were acquired ex vivo from a total
of 74 breast tissue samples belonging to 4 distinct histopathologic
categories: invasive ductal carcinoma �IDC�, ductal carcinoma in situ
�DCIS�, fibroadenoma �FA�, and normal breast tissue. A probability-
based multivariate statistical algorithm capable of direct multiclass
classification was developed to analyze the diagnostic content of the
spectra measured from the same set of breast tissue sites with these
different techniques. The algorithm uses the theory of nonlinear maxi-
mum representation and discrimination feature for feature extraction,
and the theory of sparse multinomial logistic regression for classifica-
tion. The results reveal that the performance of Raman spectroscopy is
superior to that of all others in classifying the breast tissues into re-
spective histopathologic categories. The best classification accuracy
was observed to be �99%, 94%, 98%, and 100% for IDC, DCIS, FA,
and normal breast tissues, respectively, on the basis of leave-one-
sample-out cross-validation, with an overall accuracy of �99%.
© 2008 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2975962�
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Introduction
reast cancer is the most common form of malignant tumor

ound in women in the United States, with an estimated
40 000 new cases diagnosed in 2007.1 The implementation
f regular screening programs and increased use of x-ray
ammography for early detection have had a significant im-

act on breast cancer mortality. Mammograms, however, still
uffer from insufficient sensitivity and high rates of “false
egatives,” which result in unnecessary follow-ups and biop-
ies that lead to patient trauma, time delay, and high medical
osts.2 In fact, 60% to 90% of the suspicious lesions detected
y mammography are benign upon biopsy,3 which can range
rom the fine needle aspiration of single cells to the surgical
emoval of the entire suspicious mass. A technique that holds
onsiderable promise to overcome these limitations is optical
pectroscopy, thanks to its ability to provide biochemical and
orphological information about a tissue in a near-real time,
inimally or noninvasive manner.4–7 Another potential appli-

ddress all correspondence to Shovan Kumar Majumder, Department of Bio-
edical Engineering, Vanderbilt University, VU Station B, Box 351631, Nash-

ille, TN 37235; E-mail: shovan.k.majumder@vanderbilt.edu
ournal of Biomedical Optics 054009-
cation of optical spectroscopy that has currently drawn sig-
nificant interest is therapeutic guidance,8 especially the evalu-
ation of surgical margins in real time to guide tumor resection
during breast conservative therapy �partial mastectomy�.

Optical spectroscopic techniques that have been investi-
gated for breast cancer detection to date include autofluores-
cence, diffuse reflectance, and Raman spectroscopies.4–9 Al-
fano and co-workers10–12 were the first to apply autofluor-
escence spectroscopy to the problem of identifying breast ma-
lignancy. A series of studies carried out by them10–12 showed
that significant differences exist in the fluorescence signatures
of malignant and nonmalignant human breast tissues. In par-
ticular, they showed that using discrimination indices based
on ratio of intensities from emission spectra at 300-nm exci-
tation and excitation spectra at 340-nm emission, they could
discriminate malignant from fibrous breast tissues with 93%
sensitivity and 95% specificity, but results were worse for
discriminating normal fatty and malignant tissues. Gupta
et al.13 and Majumder et al.14 measured emission spectra at
337- and 488-nm excitation wavelengths from normal,

1083-3668/2008/13�5�/054009/11/$25.00 © 2008 SPIE
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enign, and malignant breast tissue samples, and using the
ntegrated emission intensity from the 337-nm excitation,
hey separated malignant tissues in a binary fashion from both
enign and normal with sensitivity and specificity of up to
9.6%.13,14 More recently, Palmer et al.15 used the fluores-
ence emission spectra from multiple excitation wavelengths
anging from 300 to 460 nm to separate malignant from non-
alignant samples. Using principal component analysis

PCA�, followed by a Wilcoxon rank-sum test to identify sig-
ificant components, and then entering those into a support
ector machine �SVM� resulted in 70% sensitivity and 92%
pecificity for discriminating malignant from normal or be-
ign tissues.15 Using a probe with three different delivery-to-
ollection fiber distances and similar data analysis procedures,
he same group found that analyzing integrated fluorescence
mission intensities from a single excitation wavelength at all
hree separations could provide results comparable to those of
he previous study, but with a simpler experimental setup.16

A few groups have investigated the utility of UV-visible
iffuse reflectance �or elastic scattering� spectroscopy, either
lone or in conjunction with fluorescence, for breast cancer
iagnosis. Of these, Bigio et al.8 used in vivo measurements in
n attempt to both make a diagnosis and help guide resection,
nd using diagnostic algorithms based on artificial neural net-
orks and hierarchical cluster analysis, they were able to dis-

inguish malignant from normal breast tissue with sensitivities
p to 69% and specificities up to 93%. Palmer et al.15 inves-
igated the utility of combining diffuse reflectance measure-

ents with fluorescence measurements, but they found that
iagnostic performance for breast cancer was not significantly
mproved by doing so.

Perhaps the most widespread application of Raman spec-
roscopy in cancer research has been for breast cancer
etection.17–24 Alfano et al.17 were the first to investigate the
bility of Raman spectroscopy to distinguish normal from ma-
ignant breast tissue, using a Fourier transform Raman spec-
rometer at 1064-nm excitation. Later, Frank et al.18,19 and
edd et al.20 employed Raman spectroscopy using visible and
ear IR excitation to study excised human breast tissues.
ore recently, Feld and colleagues21–24 have done extensive
ork on using Raman spectroscopy for breast cancer diagno-

is. An early study21 similar to Redd et al.20 showed compa-
able spectra, but multivariate statistical algorithms improved
iagnosis. Over the past several years, this group has devel-
ped a system that classifies breast Raman spectra according
o the modeled contributions of individual component spectra
rom materials such as fat, collagen, and DNA.22 They have
sed this system on tissue samples to discriminate invasive
arcinoma from normal fatty, fibroadenoma, and fibrocystic
hange tissues with an overall accuracy of 86%,23 and in a
mall pilot in vivo trial for guiding resection, normal, fibro-
ystic change, and malignant tissues were classified with an
verall accuracy rate of 93%.24

Although the studies described use autofluorescence, dif-
use reflectance, combined autofluorescence and diffuse re-
ectance, or Raman spectroscopy for breast tissue discrimina-

ion, there is no published report of a direct, side-by-side
omparison of the efficacy of these modalities for specific
ypes of discrimination. The goal of this paper, then, is to
eport a comparative evaluation of the relative capabilities of
uorescence, diffuse reflectance, combined fluorescence and
ournal of Biomedical Optics 054009-
diffuse reflectance, and Raman spectroscopy for discriminat-
ing the different histopathologic categories of human breast
tissues. Fluorescence, diffuse reflectance, and Raman spectra
were acquired ex vivo from human breast tissue samples be-
longing to four histopathologic categories: invasive ductal
carcinoma �IDC�, ductal carcinoma in situ �DCIS�, fibroad-
enoma �FA�, and normal. A probability-based multivariate sta-
tistical algorithm capable of direct multiclass classification25

was developed to analyze the diagnostic content of these dif-
ferent sets of optical spectra measured sequentially from the
same set of breast tissue sites. The results showed that al-
though Raman spectroscopy allows for the most accurate tis-
sue classification as may be useful for clinical diagnosis of the
pathological state of a tumor, combined fluorescence and dif-
fuse reflectance holds promise for use in clinical applications
such as evaluating margin status during breast surgery in
which imaging an entire tissue surface will be required for
delineating normal from nonnormal breast tissue.

2 Materials and Methods
2.1 Breast Tissue Samples
The human breast tissue samples were obtained under a pro-
tocol approved by the Vanderbilt University Institutional Re-
view Board. The freshly frozen samples were obtained either
from the tissue bank at Vanderbilt Clinic or from the National
Cancer Institute’s �NCI� Cooperative Human Tissue Network.
A total of 74 tissue samples were obtained for this study.
Normal tissue samples were obtained from either reduction
mammoplasty or uninvolved areas from radical mastectomy
procedures, and tumor samples were partial sections of surgi-
cally removed breast lesions. All samples were stored at
−80 °C until spectroscopic study, at which point they were
thawed to room temperature in buffered saline.

2.2 Instrumentation
In vitro fluorescence and diffuse reflectance spectra of breast
tissue samples were measured using a portable spectroscopic
system as illustrated in Fig. 1. A high-pressure nitrogen laser
�Spectra Physics, Mountain View, CA� is used as the excita-
tion source for fluorescence measurements, and a 150-W
tungsten-halogen lamp �Ocean Optics, Dunedin, Florida�
emitting broadband white light from 400 to 850 nm is used
for diffuse reflectance measurements. Light delivery to and
collection from the sample is achieved with a fiber-optic
probe consisting of seven 300-�m core diameter fibers ar-
ranged in a six-around-one configuration �Romack, Williams-
burg, Virginia�. Two of the surrounding fibers deliver laser
and white light consecutively to the tissue sample while the
remaining fibers collect fluorescence and diffuse reflectance
from the tissue sample. Diffuse reflectance and fluorescence
emissions collected by the fiber-optic probe are serially dis-
persed and detected with a chip-based spectrometer �model
number S-2000, Ocean Optics�. For this study, the output
power of the white light was �0.6 mW at the tissue surface,
and the nitrogen laser was operated at a 20-Hz repetition rate,
5-ns pulse width, and average pulse energy of 45�5 �J at
the tissue surface. An integration time of 100 ms was used for
each spectral measurement. The overall spectral resolution of
the system was �2 nm.
September/October 2008 � Vol. 13�5�2
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Raman spectra of the breast tissue samples were measured
ith a portable Raman spectroscopy system shown in Fig. 2.
he system consists of a 785-nm diode laser �Process Instru-
ents, Inc., Salt Lake City, Utah�, a seven-around-one beam-

teered fiber optic probe �Visionex Inc., Atlanta, Georgia�, an
maging spectrograph �Kaiser Optical Systems, Inc., Ann Ar-
or, Michigan�, and a back-illuminated, deep-depletion, ther-
oelectrically cooled charge-coupled device �CCD� �Prince-

on Instruments, Princeton, New Jersey�, all controlled with a
aptop computer. The beam-steered fiber optic probe delivers
he 785-nm light, which is band pass filtered at the probe tip,
nto the tissue and collects the Raman scattered light, which
s then filtered with an inline notch filter within the probe
tself. The light is then fed into the spectrograph where it is
ltered again with a 785-nm holographic notch filter and dis-
ersed onto the CCD, where the computer records the signal.
or this study, the fiber optic probe delivered 80 mW onto the

issue and collected the scattered light for 1 to 3 s.

.3 Experimental Methods
standard protocol was followed for the spectral measure-

ents and maintained for all the samples in this study. Prior to
pectral acquisition, each sample was thawed to room tem-

SpectrometerComputer

Fig. 1 Schematic of the spectroscopic system fo

Diode Laser

785nm,
80mW

Spectrograph CCD

Computer

Single 400 µm fiber

Seven 300 µm fibers

ig. 2 Schematic of the experimental setup for Raman spectroscopy
easurements �NF: notch filter at 785 nm; BP: bandpass filter at
85 nm�.
ournal of Biomedical Optics 054009-
perature in phosphate-buffered saline. For recording spectra,
the tissue sample was kept on a sheet of aluminum foil, and
the tips of the fiber-optic probes were placed normally in
gentle contact with the target tissue. From each tissue sample,
spectra were recorded from 2 to 6 sites depending on the size
of the sample. From each individual site, autofluorescence,
diffuse reflectance, and Raman spectra were measured se-
quentially. In all cases, the overhead fluorescent lights were
turned off during the measurements. Following spectral acqui-
sition from each sample, the investigated sites were inked to
record their locations, and then fixed in formalin for standard
hematoxylin and eosin staining and examination by an expe-
rienced pathologist �F.B.� blinded to the results of the optical
spectra. The histopathology report of each site was considered
to be the gold standard. All spectra were categorized accord-
ing to their histological identities and grouped into IDC,
DCIS, FA, or normal breast tissue.

2.4 Data Processing
After acquisition of autofluorescence and diffuse reflectance
spectra, a set of reference spectra from a fluorescence and a
reflectance standard were recorded to correct for intersample
variability due to variations in laser-pulse energy and white
light power. The fluorescence standard is a low-concentration
Rhodamine 6G solution �2 mg /L� contained in a quartz cu-
vette, and the reflectance standard is a 20% reflectance plate
�Labsphere, North Sutton, New Hampshire� placed in a black
box. All in vitro raw fluorescence and diffuse reflectance spec-
tra were processed to remove instrumentation-induced varia-
tions and to yield calibrated spectra, the details of which are
described elsewhere.26 The resultant fluorescence and diffuse
reflectance spectra were further corrected for the nonuniform
spectral response of the detection system. Fluorescence spec-
tra were recorded from 370 to 650 nm, and diffuse reflec-
tance spectra were recorded from 400 to 800 nm.

Prior to Raman spectral measurements, the wave number
axis was calibrated with a neon-argon lamp, acetaminophen,
and naphthalene standards. For each Raman spectrum mea-
sured, the signal from the CCD was binned along the vertical
axis to create a single spectrum per measurement site. Prior to
any signal processing, the spectrum was truncated to only
include the region from about 990 to 1800 cm−1 to eliminate
the large Raman peaks due to the silica present in the fiber-
optic probe that obscure any tissue Raman peaks, as well as

Nitrogen Laser

337nm

Tungsten-Halogen
Lamp

escence and diffuse reflectance measurements.
r fluor
September/October 2008 � Vol. 13�5�3



t
s
3
G
r
m
p

a
s
m
t
i
s
i

c
fl
n
e
t
d

2
F
w
f
m
�
n
�
c
�
s
t

e
a
d
i
f
t
p
p

F
a
b

Majumder et al.: Comparison of autofluorescence, diffuse reflectance…

J

he noise present at the very end of the spectral region. The
pectrum was then binned along the wave number axis in
.5-cm−1 intervals and filtered with a second-order Savitzky-
olay filter �window=17.5 cm−1� for noise smoothing. Fluo-

escence subtraction was accomplished using an automated,
odified polynomial fitting method in which a fifth-order

olynomial is fit to the fluorescence baseline.27

Following data processing, a method of normalization was
dopted to remove the absolute intensity information from the
pectra that might be affected by many unavoidable experi-
ental factors. In the case of fluorescence and diffuse reflec-

ance, the spectrum from each site of a sample was normal-
zed with respect to the integrated intensity ��I� from that
ite. In the case of Raman, each spectrum was normalized to
ts mean spectral intensity across all Raman bands.

The set of spectral data normalized in the manner just dis-
ussed were used for subsequent data analysis. For combined
uorescence and diffuse reflectance, the respective area-
ormalized spectra from each tissue site were concatenated
nd-to-end to form a single column vector. These column vec-
ors were then further concatenated in rows to form the input
ata matrix �for all the tissue samples investigated�.

.5 Data Analysis
igure 3 shows a flow chart of the diagnostic algorithm that
as developed to analyze the breast tissue fluorescence, dif-

use reflectance, and Raman spectra. The algorithm develop-
ent was described previously25 and consisted of two steps:

i� extraction of diagnostic features from the spectra using
onlinear maximum representation and discrimination feature
MRDF�28 and �ii� development of a probabilistic scheme of
lassification based on sparse multinomial logistic regression
SMLR�29 for classifying the nonlinear features into corre-
ponding tissue categories. Each step is described in detail in
he following.

Given a set of input data comprising samples from differ-
nt classes with a given dimensionality, nonlinear MRDF28

ims to find a set of nonlinear transformations of the input
ata that optimally discriminate between the different classes
n a reduced dimensionality space. It invokes nonlinear trans-
orms, in this case restricted order polynomial mappings of
he input data,28 in two successive stages. In the case of
resent spectral data, the aim of nonlinear MRDF is to com-
ute K�M ��N� nonlinear transformation vectors, � , from

Raw SpectraNormalized Spectra

Nonlinear

MRDF

Nonlinear

Output Features

SMLR

ig. 3 Schematic overview of the diagnostic algorithm developed to
nalyze autofluorescence, diffuse reflectance, and Raman spectra of
reast tissues.
K

ournal of Biomedical Optics 054009-
N-dimensional �where N is the number of wavelengths over
which spectra were recorded� spectra of breast tissue sites,
such that the projections of the input data on �K from the
different tissue categories are statistically well separated from
each other. In the first stage, the input spectral data x �normal-
ized intensities corresponding to wavelengths of the spectra�
from each tissue type are raised to the power p� to produce
the associated nonlinear input vectors xp�, which are then sub-
ject to a transform �M� such that yM� =�M�

Txp� are the first
stage output features in the nonlinear feature space of reduced
dimension M �N. In the second stage, the reduced
M-dimensional output features yM� for each tissue type are
further transformed nonlinearly to the power p to produce
higher order features yMp� , and a second transform �K is com-
puted so as to yield the final output features yK=�K

TyMp in the
nonlinear feature space of dimension K �K�M�. Because the
nonlinearities introduced in the two stages are different �p� in
the first stage and p in the second stage�, this is expected to
produce more general nonlinear transforms on the input spec-
tral data, leading to improved separation of the final nonlinear
features for the tissue categories in the new feature space.
Thus MRDF automatically finds a closed form solution for
the best set of nonlinear transforms.

Classification with SMLR29 is a probabilistic multiclass
model based on the sparse Bayesian machine-learning frame-
work of statistical pattern recognition. The central idea of
SMLR is to separate a set of labeled input data into its con-
stituent classes by predicting the posterior probabilities of
their class membership. It computes the posterior probabilities
using a multinomial logistic regression model and constructs a
decision boundary that separates the data into its constituent
classes based on the computed posterior probabilities follow-
ing Bayes’ rule. Classification of a given set of input data x is
based on the vector of posterior probability estimates yielded
by the SMLR algorithm and a class is assigned to a data for
which its posterior probability is the highest

ŷ�x� = arg max P�yi = 1�x� .

An important task following development of the diagnostic
algorithm was to evaluate its classification ability in an unbi-
ased way through cross-validation. Because we had a limited
number of spectra in each diagnostic category from a limited
number of samples, the cross-validation of the algorithm was
performed using leave-one-sample-out cross-validation. In
this method, the training of the algorithm was performed us-
ing N-1 samples �where N=74 samples�, and the test was
carried out using the excluded sample.30 This was repeated N
times, each time excluding a different sample. Thus, training
was achieved using, in a sense, all samples, and at the same
time independence between the training and test sets was
maintained.

2.5.1 Multiclass receiver operating characteristic
analysis

To quantitatively compare the relative performance of the di-
agnostic algorithms developed for fluorescence, diffuse reflec-
tance, combined fluorescence and diffuse reflectance, and Ra-
man spectral data sets, a multiclass receiver-operating
characteristic �ROC� analysis was carried out on the classifi-
September/October 2008 � Vol. 13�5�4
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ation results yielded by the corresponding algorithms. The
ormulation developed by Hand and Till31 was followed for
his purpose. The formulation extends the two-class ROC
nalysis in a straightforward way for multiclass case and com-
utes a generalized metric indicative of overall performance
easure of a given multiclass diagnostic algorithm. Given n

umber of classes, the Hand and Till measure �HTM� is the
verage of the pairwise area under the ROC curves between
�n−1� /2 pairs of classes:

HTM =
2

�n���n� − 1� �
�ci,cj��C

AUC�ci,cj� ,

here AUC is the area under the two-class ROC curve in-
olving classes ci and cj. The summation is calculated over all
airs of distinct classes, irrespective of order. Similar to the
wo-class case, the closer the HTM equals to 1, the more
ccurate the corresponding diagnostic algorithm is.

Results
n vitro fluorescence, diffuse reflectance, and Raman spectro-
copic measurements were carried out on a total of 74 differ-
nt tissue samples from 74 different patients. Optical spectra
ere acquired from 293 unique tissue sites on these samples.
he details of the histopathological distribution of the tissue
ites are summarized in Table 1.

Figures 4–6 show the average normalized fluorescence,
iffuse reflectance, and Raman spectra for IDC �86�, DCIS
18�, FA �55�, and normal breast tissues �134�, with the error
ars representing the spectral standard deviations. From the
gures, it is evident that the variation in the measured spectral

ntensity is comparable for all the tissue types in all three sets
f optical spectra. The percentage variation �� / x̄� in the spec-
ral intensities from the different measurement sites was ob-
erved to lie in the range of �15% to 35% over the respec-
ive number of tissue sites included in the four
istopathological categories for all the three sets of spectra.
ere, x̄ is the mean intensity value from different measure-
ent sites of one category and � is one standard deviation.
For comparison of spectral differences among the different

issue types, the average fluorescence, diffuse reflectance, and
aman spectra are plotted without error bars in Figs. 7–9 .
ne can see that although fluorescence from FA tissue is vis-

bly different than that from the rest of the tissue types
hroughout the spectral region, the differences among IDC,

able 1 Histological distribution of the tissues.

Category
No. of
Spectra

No. of
Tissue Samples

nvasive ductal carcinoma �IDC� 86 25

Ductal carcinoma in-situ �DCIS� 18 6

Fibroadenoma �FA� 55 11

Normal �adipose, glandular� 134 32

Total 293 74
ournal of Biomedical Optics 054009-
DCIS, and normal breast tissues are fairly subtle except in the
390-nm band region where the band intensities show promi-
nent differences. Similarly, although the average reflectance
spectra show visible differences among all the tissue types in
general, almost no difference is seen between IDC and normal
breast tissue in the 590 to 800-nm wavelength region. In con-
trast, the differences in the average Raman spectra appear to
be somewhat more pronounced among all the tissue types
across all the major Raman bands present over the entire wave
number region.

Tables 2–5 show the diagnostic results in the form of con-
fusion matrices displaying comparisons of the pathological
diagnosis with that of the MRDF–SMLR–based spectroscopic
diagnostic algorithms. In all instances, the classification re-
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Fig. 4 Mean fluorescence spectra �thick solid lines� of the �a� invasive
ductal carcinoma �n=86�, �b� ductal carcinoma in situ �n=18�, �c�
fibroadenoma �n=55�, and �d� normal �n=134� breast tissue samples.
The gray lines above and below the thick black solid lines represent
±1 standard deviation.
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Fig. 5 Mean diffuse reflectance spectra �thick solid lines� of the �a�
invasive ductal carcinoma �n=86�, �b� ductal carcinoma in situ �n
=18�, �c� fibroadenoma �n=55�, and �d� normal �n=134� breast tissue
samples. The gray lines above and below the thick black solid lines
represent ±1 standard deviation.
September/October 2008 � Vol. 13�5�5



s
v
fl
a
c
c
t
w
s
m
o
w
c
s
F
a
g
t
a

F
t
b
T
±

F
d
s

Majumder et al.: Comparison of autofluorescence, diffuse reflectance…

J

ults were obtained based on leave-one-sample-out cross-
alidation of the entire data set. One can see that diffuse re-
ectance data alone achieved an overall classification
ccuracy of 72% �211 out of 293�. Its best performance was in
lassifying FA tissue �85% accuracy�, though it fared worse in
lassifying other tissue types, and errors were spread among
he various classes. Fluorescence data alone provided the
orst overall accuracy, correctly classifying only 209 mea-

urement sites �71%�. It proved most adept at classifying nor-
al breast tissues, though accuracy in that diagnosis was still

nly 85%. When fluorescence and diffuse reflectance spectra
ere combined, the diagnostic accuracy improved quite a bit,

lassifying 247 out of 293 �84%� sites correctly. Normal tis-
ues were correctly classified in 86% of cases, but DCIS and
A were classified correctly in 89% and 98% of the sites. The
lgorithm still struggled somewhat to classify IDC, but, in
eneral, misclassifications appeared less random than with ei-
her modality alone. With Raman spectra as the input data, the
lgorithm discriminated all four classes very well, correctly
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ig. 6 Mean Raman spectra �thick solid lines� of the �a� invasive duc-
al carcinoma �n=86�, �b� ductal carcinoma in situ �n=18�, �c� fi-
roadenoma �n=55�, and �d� normal �n=134� breast tissue samples.
he gray lines above and below the thick black solid lines represent
1 standard deviation.

ig. 7 Mean fluorescence spectra of the invasive ductal carcinoma,
uctal carcinoma in situ, fibroadenoma, and normal breast tissue
amples without error bars.
ournal of Biomedical Optics 054009-
classifying 290 out of 293 �99%� sites. Normal tissues, which
include both fatty and glandular, were classified correctly for
every site, and only one each IDC, DCIS, and FA sites were
misclassified.

In addition to assigning class labels, all the diagnostic al-
gorithms also yielded posterior probabilities of the measured
tissue sites belonging to each breast tissue type. Figures 10�a�
to 10�d� illustrate these posterior probabilities computed by
the four different algorithms. The posterior probabilities are
indicative of the certainty of classification, and they are plot-
ted for all the different tissue sites included in each type of
tissue. It is apparent from the figures that although more than
95% of the correctly classified tissue sites in each type have a
posterior probability 	0.80 with the algorithm based on Ra-
man spectra of breast tissues, a significant fraction �up to
�50%� of these sites classified correctly using the algorithm
based on combined fluorescence and diffuse reflectance spec-
tra are seen to have a posterior probability �0.80. Similarly,
although the accuracy obtained in correctly classifying FA and
normal tissue sites is 	80% with the algorithm based on
either fluorescence or diffuse reflectance spectra alone, only
�50% to 60% of these tissue sites are seen to have a poste-
rior probability 	0.80.

The multiclass ROC analyses of the classification results
provided a quantitative evaluation of the overall performance
of the diagnostic algorithms. Table 6 lists the HTM values

Fig. 8 Mean diffuse reflectance spectra of the invasive ductal carci-
noma, ductal carcinoma in situ, fibroadenoma, and normal breast
tissue samples without error bars.

Fig. 9 Mean Raman spectra of the invasive ductal carcinoma, ductal
carcinoma in situ, fibroadenoma, and normal breast tissue samples
without error bars.
September/October 2008 � Vol. 13�5�6
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btained for the algorithms based on fluorescence, diffuse re-
ectance, combined fluorescence and diffuse reflectance, and
aman spectra. The estimated HTM value of the algorithm
ased on fluorescence spectra alone is 0.83, and those for
iffuse reflectance, combined fluorescence and diffuse reflec-
ance, and Raman spectra based algorithms are 0.88, 0.95, and
.99, respectively. It is important to mention here that the
TM value is a quantitative measure of the gross perfor-
ance of an algorithm and the HTM for an ideal diagnostic

lgorithm will have a value of 1.

Discussion
ost of the studies reported to date on the application of

ptical spectroscopy for breast cancer detection8–24 have used
ne of three spectroscopic techniques: fluorescence, diffuse
eflectance, or Raman scattering. However, a comprehensive,
ide-by-side evaluation of the relative efficacies of these dif-
erent methods has not been addressed in the literature. The
oal of the present study is to evaluate and compare the rela-
ive capabilities of fluorescence, diffuse reflectance, combined
uorescence and diffuse reflectance, and Raman spectroscopy
or simultaneously discriminating the different histopatho-
ogic categories of human breast tissues. Such an evaluation is
mportant because it may help choose the optimal modality
or a given diagnostic problem. In the present study, fluores-
ence, diffuse reflectance, and Raman spectra were acquired

able 2 Confusion matrix displaying classification of breast tissues
sing MRDF-SMLR–based algorithm with fluorescence spectra.

Pathology Diagnosis �no. of sites�

Fluorescence Diagnosis

IDC DCIS FA Normal

IDC �86� 50 2 10 24

DCIS �18� 8 1 0 9

FA �55� 5 1 44 5

Normal �134� 11 3 6 114

he classification results represent leave-one-sample-out cross-validation. The
old type values appearing in the diagonal of each confusion matrix denote
umber of tissue sites correctly classified for each diagnostic category.

able 3 Confusion matrix displaying classification of breast tissues
sing MRDF-SMLR–based algorithm with diffuse reflectance spectra.

Pathology Diagnosis �no. of sites�

Diffuse Reflectance Diagnosis

IDC DCIS FA Normal

IDC �86� 44 2 1 39

DCIS �18� 9 5 0 4

FA �55� 3 0 47 5

Normal �134� 13 2 4 115

he classification results represent leave-one-sample-out cross-validation.
ournal of Biomedical Optics 054009-
ex vivo from human breast tissue samples belonging to four
distinct histopathologic categories: IDC, DCIS, FA, and nor-
mal. A probability-based multivariate statistical algorithm ca-
pable of direct multiclass classification was developed to ana-
lyze the diagnostic content of these different sets of optical
spectra measured sequentially from the same set of breast
tissue sites.

The primary basis for optical detection using spectroscopic
techniques is an array of biochemical changes that take place
as tissue undergoes neoplastic transformations. For example,
IDC, FA, and normal breast tissues are known to show vari-
able amounts of collagen, and elastin, which is reflected in the
fluorescence intensity of the 390-nm band characteristic of
these connective tissue proteins.4–6 Similarly, the differences
in the concentrations and oxidation states of coenzymes such
as nicotinamide adenine dinucleotide �NADH� and flavin ad-
enine dinucleotide �FADH2� due to differences in metabolic
activities in normal and neoplastic breast tissues contribute to
the changes in the fluorescence intensity of the broad 460-nm
band believed primarily to be due to these fluorophores.4–6

Some of the changes found in the fluorescence spectra of
normal and abnormal breast tissues are also the result of
changes in the wavelength-dependent absorption and scatter-
ing properties of tissues.4–6 However, these changes can be
seen to be more prominent in the diffuse reflectance spectra of

Table 4 Confusion matrix displaying classification of breast tissues
using MRDF-SMLR–based algorithm with combined fluorescence and
diffuse reflectance spectra.

Pathology Diagnosis
�no. of sites�

Combined Fluorescence
and Diffuse

Reflectance Diagnosis

IDC DCIS FA Normal

IDC �86� 62 2 0 22

DCIS �18� 2 16 0 0

FA �55� 0 0 54 1

Normal �134� 17 2 0 115

The classification results represent leave-one-sample-out cross-validation.

Table 5 Confusion matrix displaying classification of breast tissues
using MRDF-SMLR–based algorithm Raman spectra.

Pathology Diagnosis
�no. of sites�

Raman Diagnosis

IDC DCIS FA Normal

IDC �86� 85 0 0 1

DCIS �18� 0 17 0 1

FA �55� 0 1 54 0

Normal �134� 0 0 0 134

The classification results represent leave-one-sample-out cross-validation.
September/October 2008 � Vol. 13�5�7
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he corresponding tissue types, as diffuse reflectance provides
direct measurement of tissue absorption as well as

cattering.8,15 For example, the several dips found in the dif-
use reflectance spectra of breast tissues represent the signa-
ures of absorption by oxygenated and deoxygenated
emoglobin,8,15 which are major absorbers present in blood
nd have structured absorption bands spanning nearly the en-
ire visible and near-infrared region.4–6,8 The differences in
bsorption properties between normal and abnormal breast
issues, known to be caused primarily by hemoglobin, are
learly seen in the measured diffuse reflectance spectra that
how significant variation in spectral line shapes for the cor-
esponding tissue types. On the other hand, Raman spectros-
opy probes the vibrational energy levels of molecules, and
pecific peaks in the Raman spectrum correspond to particular
hemical bonds or bond groups.7 Because of Raman’s chemi-
al specificity, it has the ability to discern the slight biochemi-
al changes associated with neoplastic transformation.7 For
xample, the spectral variations between the different breast
issue pathologies observed at 1000 to 1150, 1170, 1200 to
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ig. 10 Posterior probabilities of being classified as invasive ductal
ormal for the �a� fluorescence, �b� diffuse-reflectance, �c� combined a
issue sites.
ournal of Biomedical Optics 054009-
1345, 1440, and 1650 cm−1 correspond to biochemical differ-
ences inherent in the different breast tissues, notably connec-
tive tissue proteins, and fatty acids.7,17 The normal breast tis-
sue spectra are noticeably different as compared with all other
categories and are dominated by Raman bands characteristic
of fatty acids �1650, 1440, and 1300 cm−1�, whereas the in-
tensities of these lipid-specific bands are much reduced in the
Raman spectra of IDC, DCIS, and FA, implying a relative
increase in protein content in these tissue types. In contrast,
differences among IDC, DCIS, and FA are found to be sub-
tler: the ratio of the bands between 1200 to 1300 cm−1 �tryp-
tophan, phenylalanine, amide III: proteins� and 1440 cm−1

�CH2 bending: proteins, lipids� varies with tissue types, and
this variation is different between cancerous and noncancer-
ous breast tissues. Similarly, the ratio of peaks at 1650 cm−1

�amide I: proteins, lipids� and the small peak near 1550 cm−1

�tryptophan� is different in the IDC and FA than in DCIS.
Other variations include changes in the band patterns and in-
tensities between 1000 and 1100 cm−1 �tyrosine, proline, phe-

0.0

0.2

0.4

0.6

0.8

1.0

Po
st
er
io
r
Pr
ob
ab
ili
ty

Tissue Sites

IDCDCISFANormal

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Po
st
er
io
r
Pr
ob
ab
ili
ty

Tissue Sites

IDCDCISFANormal

(d)

ma �IDC�, ductal carcinoma in situ �DCIS�, fibroadenoma �FA�, and
rescence and diffuse reflectance, and �d� Raman spectra of the breast
carcino
utofluo
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ylalanine, proteins� evident as a function of pathology.
It is relevant to note here that although all the spectro-

copic techniques are seen to lead to many observable spectral
ifferences between different breast pathologies, it is more
mportant to see the significance of these variations toward
athological classification. A gross comparison of the classi-
cation results �see Tables 2–5� yielded by the four diagnostic
lgorithms clearly indicates that even though fluorescence
lone is the least capable in accurately discriminating among
he four histopathologic categories of breast tissues based on
heir measured spectra at 337-nm excitation, the performance
f diffuse reflectance alone appears to be a bit better. Al-
hough the results are improved to a large extent when fluo-
escence and diffuse reflectance spectra are combined, the
erformance of Raman spectroscopy alone is seen to be supe-
ior to that of all the other techniques employed. The large
mprovement in classification performance of the Raman-
ased algorithm likely originates from the greater diagnostic
ontent of the tissue Raman spectra in comparison with that
rom either fluorescence or diffuse reflectance spectra. Al-
hough diffuse reflectance primarily probes the absorption and
cattering properties of tissue,8,15,16 fluorescence, in principle,
as the additional advantage of biochemical specificity that
rises from the fact that tissue contains several intrinsic fluo-
ophores that have their characteristic fluorescence
mission.4–6 However, the significantly broad and overlapping
mission profiles of these fluorophores make the appearance
f the resulting tissue fluorescence �which is a superposition
f the spectra of its constituent fluorophores modulated by
issue optical properties� spectra mostly flat and featureless,4–6

hus making it difficult, in practice, to fully exploit this ad-
antage. In contrast, the Raman spectrum of a tissue consists
f relatively narrower bands characteristic of specific molecu-
ar vibrations of a much larger number of Raman-active bio-
hemicals present in tissue,7 thus allowing one to detect mo-
ecular information in a tissue in greater detail than with
uorescence or diffuse reflectance.

A critical evaluation of the diagnostic results listed in
ables 2–5 reveals some interesting points that are worth not-

ng. One may see that both fluorescence and diffuse reflec-
ance consistently misclassify 30% to 45% of IDC tissue sites
s normal, and the situation does not improve much even with
he combined approach, which still leads to a 25% misclassi-
cation rate. In contrast, the classification accuracy of Raman
lone is 99% �85 out of 86 IDC tissue sites�. The likely reason
or this inferior classification performance of fluorescence and
iffuse reflectance becomes apparent only when one critically
xamines the detailed physical appearance of all the tissue
amples investigated. It was found that most of the malignant
issue sites that were misclassified as normal belonged to

able 6 HTM values corresponding to the diagnostic algorithms
ased on autofluorescence, diffuse reflectance, combined autofluores-
ence and diffuse reflectance, and Raman spectra of breast tissues.

Fluorescence
Diffuse

Reflectance

Combined
Autofluorescence and
Diffuse Reflectance Raman

HTM 0.83 0.88 0.95 0.99
ournal of Biomedical Optics 054009-
those IDC samples that had thin layers of fat on their surfaces.
It is known that both fluorescence and diffuse reflectance with
UV and visible light excitation can probe only the superficial
tissue layer,4–6 whereas Raman with near IR excitation can
probe to a much greater depth inside tissue.7 On a similar
note, one may find that a total of �13% to 14% of the nor-
mal tissue sites are consistently misclassified as IDC, FA, or
DCIS by either fluorescence or diffuse reflectance, and the
results remain the same even with the combined approach
with no apparent improvement in discrimination of normal
tissue sites. Although the majority of the normal breast tissue
samples investigated was predominantly fatty, a few of them
were glandular or fibrous as well. It was noticed that the nor-
mal breast tissue sites that were consistently misclassified be-
longed to the samples that had more glandular or fibrous than
fatty tissues. On the other hand, the DCIS tissue sites that
show very poor classification accuracy with either fluores-
cence or diffuse reflectance alone are seen to have a much
improved accuracy of 89% �16 out of 18� with the combined
approach. However, in this case, the performance of Raman is
only marginally better, with 17 out of 18 classified correctly
�94% accuracy�.

Recently, Palmer et al.15 demonstrated a comparison of
diffuse reflectance and fluorescence spectroscopy for ex vivo
characterization of different breast pathologies. They used
PCA for reducing the dimensionality of the spectral data and
linear SVM for classifying the resulting diagnostically rel-
evant principal components. Even though their PCA-SVM al-
gorithm was successful in discriminating malignant from non-
malignant breast tissues with a sensitivity and specificity of
70% and 92%, respectively, based on autofluorescence spectra
alone, the performance of the algorithm was found to provide
a sensitivity of only 30% and a specificity of 78% when only
diffuse reflectance spectra of the same set of breast tissue
samples were incorporated for discrimination analysis. Use of
both fluorescence and diffuse reflectance spectra in combina-
tion, however, was observed to make the algorithm perform
much better than that with diffuse reflectance alone, though
the sensitivity and specificity values were the same as that
obtained using autofluorescence alone. Although a direct com-
parison is not possible, mainly due to the differences in ex-
perimental and data analysis methods, these observations of
Palmer et al. are seen to be grossly consistent with those of
ours. For example, in our case, the maximum sensitivity and
specificity achieved by the algorithm based on combined au-
tofluorescence and diffuse reflectance in discriminating malig-
nant from nonmalignant breast tissue sites were 72% and
89%, respectively, whereas the algorithm based on fluores-
cence spectra alone provided a poorer sensitivity and speci-
ficity of 58% and 77%, respectively. It is pertinent to note
here that Palmer et al.15 used fluorescence spectra at nine
excitation wavelengths �300 to 460 nm in 20-nm increments�
as input to their diagnostic algorithm, whereas we used fluo-
rescence spectra at only 337-nm excitation for our algorithm
development. Use of multiple excitation wavelengths make it
possible to probe most of the tissue fluorophores that have
characteristic emission over the complete UV-visible wave-
length region as compared with fewer fluorophores �primarily
NADH and flavins� that can be probed with the 337-nm
wavelength. The possibility of incorporating a much larger
number of spectral features that can be of diagnostic rel-
September/October 2008 � Vol. 13�5�9
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vance in multiexcitation as compared with single-excitation
uorescence is most likely the reason for the superior classi-
cation performance of their multiexcitation fluorescence-
ased algorithm as compared with that of ours based on single
xcitation.

Although the earlier studies by several research groups17–20

emonstrated the applicability of Raman spectroscopy for
reast cancer diagnosis, a series of systematic studies carried
ut recently by the Feld group21–24 has provided strong evi-
ence that the dispersive Raman spectroscopic technique has
nough promise to be used as a potential diagnostic tool for
eal-time assessment of various breast pathologies. The
hemical and morphological models–based diagnostic algo-
ithm developed by them22 shows excellent diagnostic accu-
acies in classifying ex vivo breast tissue samples according to
heir specific pathologic diagnoses, attaining 94% sensitivity
nd 96% specificity for distinguishing cancerous breast tis-
ues from normal and benign tissues.23 One may note here
hat although there is intrinsic difference between the MRDF-
MLR–based diagnostic algorithm25 employed by us and the
pectroscopic model–based algorithm22 used by them for the
iscrimination analysis of the breast tissue Raman spectra, the
esulting discrimination results in both the cases are compa-
able with classification accuracy consistently being in the
ange of 90% to 100%. This is perhaps not unexpected given
he wealth of information embedded in the Raman spectra of
reast tissues that can serve as a basis for diagnosis.7

It is pertinent to mention here that in addition to investi-
ating the capability of fluorescence, diffuse reflectance, com-
ined fluorescence and diffuse reflectance, and Raman, a
cheme was also investigated where all three sets of spectra
ere combined to develop a diagnostic algorithm. This was
one to explore whether this kind of trimodal spectroscopy
an result in any better classification outputs. This algorithm
id not, however, lead to any improvement in the classifica-
ion results that were already obtained using the Raman-based
iagnostic algorithm alone. This perhaps shows that blindly
dding together spectral data of all three spectroscopic tech-
iques is not the way to address a given diagnostic problem
or any better accuracy.

Another important point worth considering is that when it
omes to distinguishing only normal from nonnormal tissues,
oth Raman and combined fluorescence and diffuse reflec-
ance are seen to have the potential to provide such discrimi-
ations reasonably accurately. For example, the diagnostic re-
ults in Table 4 show that combined fluorescence and diffuse
eflectance spectroscopy can discriminate tumor from normal
reast tissues with sensitivity and specificity of 83% and 85%,
espectively. If the objective is only to delineate tumor from
ormal breast tissues, as may be required for certain clinical
rocedures, the combined fluorescence and diffuse reflectance
pproach can serve as a method of choice. This technique can
e modified as well, such as adding polarization optics to
rovide depth-dependent information32 to perhaps overcome
he limitations of fluorescence and diffuse reflectance as dis-
ussed previously. A further incentive toward using this ap-
roach is that, given currently available instruments, com-
ined fluorescence and diffuse reflectance is a significantly
tronger candidate than Raman for imaging techniques. In
any applications, such as evaluating margin status during

reast conservative therapy, it is highly desirable to move to
ournal of Biomedical Optics 054009-1
an imaging-based system rather than point spectroscopy to
gather more information from an entire tissue surface in a
much quicker time. At this point, one can perhaps think of
exploiting the advantages of all three spectroscopic tech-
niques in one setting by combining imaging based on com-
bined fluorescence and diffuse reflectance with Raman-based
point spectroscopy if the goal is to cover a larger area while
accurately distinguishing normal from nonnormal tissue.
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