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Abstract. Using lasers with different wavelengths in diffuse optical
tomography �spectral DOT� has the advantage that the concentrations
of chromophores can be reconstructed quantitatively. In continuous
wave spectral DOT, it is furthermore possible to distinguish between
scattering and absorption. The choice of the laser wavelengths has a
strong impact on how well the scattering parameter and chromophore
concentrations can be determined. Current methods to optimize the
set of wavelengths disregard the sensitivity of the reconstruction result
to uncertainties in the absorption spectra of the chromophores. But
since available absorption spectra show significant deviations, it
seems to be necessary to take this into account. The wavelength op-
timization approach presented here is an extension to a method of
Corlu et al. The original method optimizes the wavelength sets such
that scattering parameters and chromophore concentrations can be
separated optimally. We introduce an additional criterion that evalu-
ates the dependence of reconstructed chromophore concentrations on
deviations of the extinction coefficients. The wavelength sets found by
the new approach are different from those determined with the origi-
nal method. Reconstructions of simulated data show the effect of us-
ing various absorption spectra for reconstruction with different wave-
length sets and illustrate the advantages of the new wavelength sets.
© 2009 Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.3156823�
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Introduction

iffuse optical tomography �DOT� can be used to image the
ptical properties of human tissue up to depths of several
entimeters. Main clinical applications that are currently ex-
lored are breast imaging, functional brain imaging, and im-
ging of the neonatal brain.1

In typical DOT systems for breast imaging, near-infrared
NIR� laser light is radiated into the tissue successively from
ifferent source positions. The light propagates through the
issue and is affected by scattering and absorption. The inten-
ity of the light emanating from the tissue is measured at a
umber of detector positions for each source position. From
hese measurements, three-dimensional �3-D� absorption
nd/or scattering images of the tissue can be reconstructed.

The systems mainly differ in the geometry of source and
etector positions, and in the light that is emitted into the
issue. While the geometry primarily affects the field of view
nd the local resolution and sensitivity in the images, the
hoice of the light sources has a major impact on what can be

ddress all correspondence to: Bernhard Brendel, Philips Research, Tomogra-
hic Imaging Systems, Röntgenstrsse 24, Hamburg, 22335, Germany. Tel: 49 40
078; Fax: 49 40 5078 2510; E-mail: bernhard.brendel@philips.com
ournal of Biomedical Optics 034041-
reconstructed from the measurements. There are two main
aspects regarding the light sources.

The first aspect is the variation of light intensity over time.
Three schemes are common: short pulses ��1 ns�,2–4 modu-
lated amplitude,5,6 and continuous wave.7–10 For a short light
pulse, a time response of the light intensity can be measured
at each detector position �time domain �TD� measurement�.
For amplitude modulated light, amplitude and phase of the
light intensity can be measured �frequency domain �FD� mea-
surement�. For continuous wave light, only the steady-state
amplitude of the light intensity can be measured �continuous
wave �CW� measurement�. The different amount of informa-
tion that is acquired for these three illumination schemes in-
fluences the reconstruction. While it is possible to separate
scattering and absorption in reconstructions based on TD and
FD measurements, this is not possible for CW measurements
without a priori knowledge.11

The second aspect is the wavelength of the light. Most
DOT systems successively use light with different wave-
lengths for the measurements �spectral measurement�. How
many and which wavelengths are used differs from system to
system. Spectral measurements are useful, since absorption

1083-3668/2009/14�3�/034041/10/$25.00 © 2009 SPIE
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nd scattering in tissue are wavelength dependent.
The wavelength dependency of absorption is dominated by

few chromophores that mainly cause absorption in tissue
for breast: oxyhemoglobin, deoxyhemoglobin, water, and
ipid�. The chromophores have distinct wavelength dependen-
ies in the relevant NIR band �see the following�. Using these
ependencies, the spatial distribution of the chromophore con-
entrations can be derived from the reconstructed absorption
mages for the different wavelengths,12–15 if the wavelengths
re chosen properly, i.e., quantitative values of physiological
arameters of the tissue can be imaged, allowing us to deter-
ine physiological parameters such as blood volume and oxy-

enation.
The wavelength dependency of the scattering is influenced

y the effective size, the number density, and the index of
efraction change of the scattering particles in tissue.16 It can
e described in good approximation by a Mie scattering
odel: �s�=a · �� /�0�−b. The spatial distribution of the model

arameters can be calculated based on the reconstructed scat-
ering images for the different wavelengths.12–15

Alternatively, using absorption spectra of the chro-
ophores and a spectral model for the scattering, chro-
ophore concentrations and scattering model parameters can

e reconstructed directly from the spectral measurements
spectral reconstruction�.9,17–21 This spectral reconstruction
eads to improved results,19 because the spectral dependency
f absorption and scattering is used as a priori knowledge.

Furthermore, spectral reconstruction works also for CW
easurements.9,18,21 Prerequisites for a good estimation of

hromophore concentrations and scattering parameters with
pectral CW DOT systems are that the laser wavelengths are
hosen properly and that the impact of deviations of a priori
nowledge from reality is negligible.

Corlu et al.21 describe a spectral reconstruction algorithm
or spectral CW DOT systems. Moreover, they suggest an
pproach to determine an optimal set of wavelengths, by con-
idering the separability of absorption and scattering and the
eparability of the chromophores. Thus, the method of Corlu
t al. meets one of the prerequisites stated earlier, and is con-
equently adequate, if the spectral models for scattering and
hromophores are exactly known. If this is not the case, the
ncertainties of the spectral models should be taken into ac-
ount for the optimization of the wavelengths, to minimize
econstruction errors. This seems to be necessary especially
or the chromophores, since the reported absorption spectra
how significant differences �see the following�.

In this paper, an extension to the method given by Corlu et
l. is presented, which considers uncertainties in the chro-
ophore absorption spectra. In Sec. 2, the basics of image

econstruction for optical tomography are introduced, and the
ncorporation of spectral models for scattering and absorption
s explained. In Sec. 3, the method of Corlu et al. for wave-
ength optimization and our extension are described. In Sec. 4,
imulations are shown, which are done to analyze the effect of
ifferent wavelengths sets on reconstructed images. In Sec. 5,
xamples for wavelength sets determined with the new
ethod are presented, and the effect of the choice of the
avelengths on the reconstruction is illustrated. In the last

ection, a conclusion is given.
ournal of Biomedical Optics 034041-
2 Spectral Reconstruction
The propagation of NIR light in breast tissue is dominated by
scattering. Thus, light propagation can be described by the
diffusion equation,22 here given for the CW case:

− � · D � � + �a� =
1

v
T , �1�

where � is the photon density, D=1 / �3�s�� is the diffusion
coefficient �with �s� being the reduced scattering coefficient�,
�a is the absorption coefficient, and v is the speed of light in
the turbid medium. T models the light source. Note that pho-
ton density, absorption, and diffusion coefficient, as well as
the light source function, are spatially varying functions,
which additionally depend on the wavelength of the light.

Furthermore, a boundary condition is necessary to describe
the behavior of light at the boundaries of the imaging region.
Commonly, a Robin-type boundary condition is applied:22

� +
D

�
·

d�

dn
= 0. �2�

n is the normal vector of the boundary surface, and � is
related to the mismatch of the refractive indices at the bound-
ary.

To come to a description that does not depend on absorp-
tion and diffusion coefficients, but on chromophore concen-
trations and parameters of the scattering model, the relation-
ship between absorption coefficient and chromophore
concentrations has to be known, as well as the relationship
between reduced scattering coefficient and scattering model
parameters.

The relationship for the absorption coefficient is given by
Beer’s law:18

�a��� = �
k=1

K

�k��� · ck. �3�

�k is the molar absorption coefficient �derived from the ab-
sorption spectrum�, and ck is the concentration of the k’th of
K chromophores.

For the scattering coefficient, the relationship is given by a
simplified Mie scattering model:16

�s���� = a · � �

�0
�−b

. �4�

The parameters of the model are the scattering amplitude a
and the scattering power b. The normalization wavelength �0
can be chosen arbitrarily.

For the direct spatial reconstruction of chromophore con-
centrations and scattering parameters, �a and �s� in Eqs. �3�
and �4� are substituted by the expressions given in Eqs. �1�
and �2�. Then, the system given by Eqs. �1� and �2� has to be
solved for ck, a, and b, using the light intensities measured for
the different wavelengths at the detector positions.

This is a nonlinear, ill-posed inverse problem, which is
commonly solved by iterative methods, with a linearization of
the problem in each iteration step. A detailed description is
given by Corlu et al.21 They found that it is difficult to reliably
May/June 2009 � Vol. 14�3�2
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econstruct both scattering parameters. For this reason, the
cattering power b will be set to a constant value in the fol-
owing reconstructions, i.e., the scattering amplitude a is the
nly scattering parameter that will be reconstructed.

Wavelength Optimization
n addition to the reconstruction method, Corlu et al. pre-
ented an algorithm to optimize the wavelengths of a spectral
W DOT system to optimally determine all parameters esti-
ated by the reconstruction. The algorithm is based on two

riteria, which are shortly described in the following.
As stated earlier, CW DOT cannot distinguish scattering

nd absorption without a priori knowledge, because of the
onuniqueness of the solution of Eqs. �1� and �2�. Using spec-
ral CW DOT and a spectral model for absorption and scat-
ering, uniqueness is recovered, if the wavelengths are chosen
roperly. Thus, the first criterion evaluates whether the usage
f a certain set of wavelengths leads to a unique solution for
he chromophore concentrations and scattering parameters.
he derivation is based on the nonuniqueness proof for CW
easurements,11,18 and leads to the expression

r = �1 − M�MTM�−1MT · 1� ,

M =	
�1��1�

�1
b ¯

�K��1�
�1

b

] � ]

�1��L�
�L

b ¯

�K��L�
�L

b

 . �5�

i are the wavelengths of the laser light used in the CW DOT
ystem �i=1, . . . ,L�. The closer the residual norm r is to zero,
he closer the inverse problem is to nonuniqueness, i.e., the
esidual r should be large for a proper set of wavelengths.
ote that this automatically implies that the number of wave-

engths L has to be larger than the number of chromophores K
o achieve uniqueness of the inverse problem.

The second criterion evaluates how well the chromophore
oncentrations can be distinguished. This can be directly de-
ived from Beers law �see Eq. �3��, if it is written in matrix
orm

	�a��1�
]

�a��L�

 = 	�1��1� ¯ �K��1�

] � ]

�1��L� ¯ �K��L�

 · 	c1

]

cK

 ,

ma = E · c . �6�

f the matrix E with the molar absorption coefficients has a
ow condition number ��E�, all singular values are to some
egree similar. This ensures that the measurements are
oughly equally sensitive for all chromophores. Thus, a proper
et of wavelengths should lead to a matrix E with a low
ondition number.

These two criteria depend, as expected, on the wavelengths
f the lasers, on the scattering model, and on the molar ab-
orption coefficients of the chromophores. The wavelengths
f the lasers can be adjusted quite accurately. The scattering
ournal of Biomedical Optics 034041-
model appears to be consistent with real breast tissue in the
relevant near-infrared band.23,24 But the molar absorption co-
efficients given in literature for the main chromophores in
breast tissue show significant deviations, as will be shown.
For this reason, it is advantageous to choose a set of wave-
lengths that leads to a robust reconstruction of the chro-
mophore concentrations, even if the assumed absorption spec-
tra deviate from reality. In the following, a criterion is derived
to allow for this.

The starting point is Beer’s law �6�. It is assumed that the
matrix E represents the assumed molar absorption coeffi-

cients. In the following, we furthermore introduce a matrix Ẽ
that contains the �unknown� correct molar absorption coeffi-
cients. The difference between these two matrices is defined
as �E. According to Eq. �6�, c is the chromophore concentra-
tion vector, which gives the absorption vector ma after multi-
plication with E. Analogously, we define c̃ as the concentra-

tion vector that gives ma if it is multiplied with Ẽ. The
difference between the two concentration vectors is �c. Thus,
the equation

ma = E · c = Ẽ · c̃ ⇔ E · c = �E + �E� · �c + �c� , �7�

holds for any given absorption vector ma. In other words: the
error �E of the matrix E results in an error �c of the con-
centration vector c for a given absorption vector ma.

To quantify this error, it is necessary to have an idea of
�E, and to know the dependency of �c on E and �E. Equa-
tion �7� can be solved for �c with a first-order approximation,
if it is assumed that the entries of the matrix �E are small
compared to the entries of E:

�c � − �ETE�−1ET�Ec . �8�

It should be noted that the absolute errors �c written in this
form depend on c. Since typical concentrations of the chro-
mophores vary by several orders of magnitude, optimizing the
absolute errors of c is not meaningful. The interesting quan-
tity are the relative errors of c. To get these relative errors, we
scale the entries of E and �E with typical chromophore con-
centrations. Then, the vector c becomes a vector of ones for
the typical case, and �c contains the relative errors with re-
spect to this case.

If the standard deviations for the scaled molar absorption
coefficients are known, they can be used to generate an as-
sumption for the matrix �E and to calculate ��c� for a given
set of wavelengths.

Recapitulating, the norm of the errors ��c� is a measure
for the reconstruction errors that can occur for the chro-
mophore concentrations due to uncertainties in the absorption
spectra of the chromophores. Thus, the new criterion is to
choose a set of wavelengths with a small value for ��c�. All
three introduced criteria �derived from the Eqs. �5�, �6�, and
�8�� have to be considered simultaneously for an optimal set
of wavelengths.

For wavelength optimization, in the following, the scatter-
ing power b is assumed to be 1, and typical values for the
chromophore concentrations are assumed to be cHbO
=10 �M �oxygenated hemoglobin�, cHbR=5 �M �deoxygen-
ated hemoglobin�, c =50% and c =50%. These con-
Water Lipid

May/June 2009 � Vol. 14�3�3
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entrations are used to scale the molar absorption coefficients
or the calculation of ��c�. Furthermore, ��E� is also deter-
ined using the scaled molar absorption factors, to obtain
ore meaningful condition numbers.

Simulation and Reconstruction
imulated measurement data is used to verify the effect of the
erived sets of wavelengths on the reconstruction result. This
as the advantage that the values of molar absorption coeffi-
ients and of parameters of the scattering model are known
xactly. Furthermore, the spatial distribution of chromophore
oncentrations and scattering values is also known and can be
ompared with the reconstruction result.

In the following, we use a circular 2-D phantom with a
iameter of 10 cm. Five circular inhomogeneities with a di-
meter of 2 cm are embedded in the background �see Fig. 1�.
he absorption in the background is caused by 50% water,
5% lipid, 10-�M oxygenated hemoglobin and 5-�M deoxy-
enated hemoglobin. The scattering follows the Mie scatter-
ng model, with a scattering amplitude a=1.5 mm−1 and a
cattering power b=1. In four of the five inhomogeneities,
ne of the chromophore concentrations is increased by 5%
ith respect to the background. In the fifth inhomogeneity, the

cattering amplitude is increased by 5%. The phantom is sur-
ounded by 24 sources and 24 detectors, as can be seen in Fig.
.

The measurement data is simulated by solving the Eqs. �1�
nd �2� with finite element methods �FEM�, using the deal.II
ibrary.25

The reconstruction is implemented using the methods de-
cribed in Ref. 26. The nonlinear inverse problem is linear-
zed, and the emerging linear system of equations is solved by
irect inversion. The linearization uses a homogeneous object
ith the parameters of the background medium as a starting
oint.26 Since the optical properties of the inhomogeneities
eviate only slightly from the background, this linearization is
ufficient to lead directly to a reasonable result. To avoid im-

Background values:
cHbO = 10µM
cHbR = 5µM
cWater = 50%
cLipid = 25%
a’ = 0.222 mm
b = 1
λ0 = 1000 nm

1.05 cHbO.05 cHbR

.05 cWater
1.05 cLipid

1.05 a’

source positions
detector positions

background
inhomogeneity

10 cm

2 cm

2.5 cm

ig. 1 The 2-D phantom used in the simulations is circular and has a
iameter of 100 mm. The concentrations of water �cWater�, lipid
cLipid�, and deoxyhemoglobin and oxyhemoglobin �cHbR and cHbO�
nd values of the scattering parameters a and b in the phantom are
iven on the right. In four of the inhomogeneities, one of the chro-
ophore concentrations is increased by 5% with respect to the back-

round. In the fifth inhomogeneity, the scattering amplitude is in-
reased by 5%. 24 sources and 24 detectors surround the phantom.
ournal of Biomedical Optics 034041-
age artifacts near sources and detectors,27 a spatially varying
gradient regularization is used, in contrast to Ref. 26. A more
sophisticated approach is given in Ref. 27.

The chromophore absorption spectra and the scattering
model can be chosen freely for simulations as well as for
reconstruction.

5 Results
Different absorption spectra are available for water,28–32

lipid,32–36 oxyhemoglobin, and deoxyhemoglobin.32,37,38 The
spectra used here are presented in Fig. 2, showing significant
deviations. Reasons for these deviations are, among others,
that the optical properties of oxygenated and deoxygenated
hemoglobin as well as human fat cannot be measured directly
in vivo but have to be approximated by ex vivo measurements
or measurements of similar substances �e.g., vegetable oil for
human fat�. The amount of deviation depends on the regarded
chromophore and wavelength. To consider this chromophore
and wavelength-dependent uncertainty, the standard devia-
tions are determined and used as entries for the matrix �E in
Eq. �8�:

�Eik =� 1

Jk − 1�
j=1

Jk 
�k
j��i� −

1

Jk
�
j�=1

Jk

�k
j���i��2�1/2

, �9�

where �k
j��i� is the molar absorption coefficient of the j’th of

Jk absorption spectra for the k’th chromophore at the wave-
length �i.

For the calculation of the three criteria �derived from the
Eqs. �5�, �6�, and �8��, the values of the molar absorption
coefficients are set to the mean value of all available spectra:

�k��i� =
1

Jk
�
j=1

Jk

�k
j��i� . �10�

To find an optimal set of five wavelengths for the imaging of
all four chromophores and the scattering amplitude, the three
criteria are computed for all possible combinations of wave-
lengths between 650 and 930 nm �10-nm step size; approxi-
mately 120,000 combinations�. The histograms of condition
number, residual, and norm of errors are shown in part in Fig.
3. As can be seen, many wavelength sets lead to a good
�=low� condition and a low norm of the errors, but only a few
lead to a high residual. From this visualization, it does not
become clear, if there are wavelength sets, which lead to good
values for all three criteria at the same time.

To come to a clearer visualization that illustrates the addi-
tional benefit of the new criterion, the two 2-D plots in Fig. 4
are used. Each dot in the plot on the left represents one set of
wavelengths and its �- and r-values. In the plot on the right,
the histogram of ��c�-values is plotted for all sets of wave-
length, for which the values of � and r are within a narrow
range, indicated by the dotted box in the left plot, i.e., consid-
ering only the two criteria based on � and r, all these sets of
wavelengths perform comparably. But looking at the histo-
gram, it can be seen that the distribution of the ��c�-values is
quite wide. In other words, the performance of the sets with
respect to uncertainties in the spectra varies a lot. Only those
sets with a low value of ��c� are assumed to be optimal.
May/June 2009 � Vol. 14�3�4
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Since it is quite difficult to choose an optimal set from this
ind of visualizations, a combined value of all three criteria is
referable. A simple weighted summation turned out to be a
ood solution. The weights are necessary, because the three
riteria vary with different order of magnitude, as can be seen
n Fig. 3. The combined value is calculated as follows:

S = 50 · ��c� − 100 · r + ��E� . �11�

he factors were determined empirically using Fig. 3 and are
omewhat arbitrary, but their exact values are not critical for
he resulting sets of wavelengths.

Figure 5 shows the 150 best sets of wavelengths �i.e., with
he highest value of S�. As could be expected, the sets are very
imilar. The first wavelength always has a value around
50 nm �mean of the 150 best sets: 653 nm�, the second
round 720 nm �mean: 719 nm�, the third around 810 nm
mean: 810 nm�, the fourth around 870 nm �mean: 867 nm�,
nd the fifth around 900 nm �mean 901 nm�. To test whether
hese wavelengths result from the particular assumptions we

ade on the average tissue composition �50% water, 50%
at�, we repeated the whole analysis for a tissue composition
hat is dominated by fat �70% fat, 30% water� and a tissue
omposition that is dominated by water �70% water, 30% fat�.
he resulting sets of wavelengths are only marginally differ-
nt �mean for 70% water/30% fat: 653, 721, 810, 866,
00 nm; mean for 30% water/70% fat: 653, 718, 809, 863,
96 nm�.

These sets of wavelength are different from those obtained
ithout the third criterion, where the five preferred wave-

engths have values around 650, 720, 870, 910, and 930 nm
see Corlu et al.21�. A probable reason for this discrepancy is
he quite large deviations of the absorption spectra for water
nd lipid for wavelengths above 900 nm �see Fig. 2�.
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The values of �, r, and ��c� give an initial idea of the
erformance of a set of wavelengths. As an example, we ana-
yze two sets in greater detail. The first set �650, 720, 810,
70, and 900 nm� is optimal if the norm of errors is ignored;
he second set �650, 720, 870, 910, and 930 nm� is optimal if
ll three criteria are considered �see earlier�. The �-value,
hich is a measure for the separability of the chromophores,

s 11.2 for the first set and 15.2 for the second set. This is a
arginal change for the condition value of a matrix, i.e., the

erformance of the two sets with respect to the separability of
he chromophores should be similar. The residual norm r has
value of 0.39 for both sets; in other words, the uniqueness of

he problem is equally assured for both sets. The ��c�-value is
.58 for the first set and 0.15 for the second set. This means
hat the root mean square �RMS� of the relative errors for
ypical values of water, fat, and hemoglobin is reduced from
8% to 15%, which seems to be a quite significant reduction
f the reconstruction errors due to deviations in the absorption
pectra.

To verify that the sets shown in Fig. 5 indeed minimize
hese reconstruction errors, simulated data for the phantom
hown in Fig. 1 are reconstructed for the two sets of wave-
engths. In the simulation we used, the mean absorption spec-
ra according to Eq. �10� are applied.

For the reconstruction, the spectral power is fixed to 1 �the

0 50 100
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ig. 4 Left: Plot of r-values versus ��E�-values. Each point represents
ith r
0.35 and ��E��40 �dotted rectangle in the left plot�.
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ig. 5 Best 150 sets of wavelengths. Each column in the plot represen
he second with a dot, the third with a diamond, the fourth with a sta
ournal of Biomedical Optics 034041-
same value as in the simulations�. All combinations of the
available water, fat, and hemoglobin spectra are applied suc-
cessively, leading to 64 different reconstruction results �4 wa-
ter spectra 	4 fat spectra 	4 hemoglobin spectra�. Addition-
ally, a reconstruction is performed using the mean absorption
spectra �as in the simulations�. For each combination of spec-
tra, three scalar values benchmarking the image quality are
determined, concerning the quantification of the chro-
mophores, the cross talk between chromophores, and the arti-
facts in the images. These scalars are explained in detail in the
following.

To evaluate the quantification of the chromophores, in each
image the RMS of the pixel values covering the inhomogene-
ity which is expected to give a signal in the respective image
is determined �e.g., in the water image, the RMS of the pixel
values covering the water inhomogeneity is determined�. The
difference between this RMS value and the expected value in
the according inhomogeneity is divided by the expected value
to derive a relative error. The absolute values of these relative
errors are averaged over the five images of one reconstruction.
The resulting scalar is called quantification error �q in the
following:
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�q =
1

N�
n=1

N ���i�Cn
vn,i

2

NCn

�1/2

− wn

wn
� . �12�

is the index running over all images �n=1. . .N�, in our case,
our chromophore images and the scattering amplitude image
N=5�. Cn is the set of all pixels covering inhomogeneity n
n=1. . .N�, and NCn

is the number of pixels in this set. The
ndexing is done such that the n’th inhomogeneity is expected
o generate a signal in the n’th image. vn,i is the pixel value of
he i’th pixel in the n’th image, and wn is the expected signal
n the n’th inhomogeneity.

To evaluate the cross talk of the chromophores, in each
mage the RMS values for all inhomogeneities that are ex-
ected to give no signal in the respective image are deter-
ined, divided by the expected signal in this image and av-

raged over all inhomogeneities and images of one
econstruction. The resulting scalar is called cross-talk error
x:

oxyhemoglobin deoxyhemoglobin
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strongest
artifacts

strongest
crosstalk

ig. 7 Reconstruction results for simulated data at 650, 720, 870, 91
econstruction showing strongest artifacts. Absorption spectra of Taka

ion showing strongest cross talk. Absorption spectra of Wray �hemog
black� to 1.05 �white� times the respective background value of the
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ig. 6 Quantification error �q �left�, cross-talk error �x �middle�, and
pectra. The dots represent the results for the first set of wavelength
avelengths �considering the norm of errors�. Cross talk is clearly red
uantification errors are comparable.
ournal of Biomedical Optics 034041-
�x =
1

N · �N − 1� �
n1=1

N

�
n2 � n1

n2=1

N ��i�Cn2
vn2,i

2

NCn2

�1/2

wn1

. �13�

To evaluate artifacts in the background, in each image the
RMS for the background pixels is calculated and divided by
the expected signal in this image. The RMS values are again
averaged over all images, leading to the artifact error �a:

�a =
1

N�
n=1

N ��i�Bvn,i
2

NB
�1/2

wn
. �14�

B is the set of all background pixels, and NB is the number of
pixels in this set.

In Fig. 6, these three benchmark values are shown for all
64 reconstruction for both sets of wavelengths. The quantifi-

ater lipid scattering amp.

930 nm. Top: Reconstruction with mean absorption spectra. Middle:
emoglobin�, Segelstein �water�, and PTB �lipid�. Bottom: Reconstruc-
, Kou �water�, and van Veen �lipid�. All images are scaled from 0.95
m �see Fig. 1�.
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ation error �left� is comparable for both sets, while the
rosstalk error is clearly reduced for the second set of wave-
engths, showing the effectiveness of the new criterion for
ptimization. The artifact level �right� is also in average
lightly better for the new set.

To get an idea how the reconstructed images look, three of
he 64 reconstruction results are shown for each set of wave-
engths:

1. The reconstruction results using the mean absorption
pectra �reference�.

2. Reconstruction results with strong artifacts for both sets
marked with arrows in the middle plot in Fig. 6�.

3. Reconstruction results with strong cross talk for both
ets �marked with arrows in the right plot in Fig. 6�.

The reconstruction results are presented in Fig. 7 for the
rst set of wavelengths. The top row shows the chromophore
oncentrations and scattering amplitude for the case in which
he mean absorption spectra are used for reconstruction. Only
eak image artifacts and cross talk are present, since the ab-

orption spectra for simulation and reconstruction are identi-

ideal

strongest
artifacts

strongest
crosstalk

oxyhemoglobin deoxyhemoglobin

ig. 8 Reconstruction results for simulated data at 650, 720, 810, 87
econstruction showing strongest artifacts �same absorption spectra
bsorption spectra as in Fig. 7�. The images are scaled the same way
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ig. 9 Cross-talk error �x �left� and artifact error �a �right� averaged f
ions with different amounts of relative noise. The dots represent the re
he results for the second set of wavelengths �considering the norm of
or noisy data. Artifacts and quantification errors �not shown here� ar
ournal of Biomedical Optics 034041-
cal. The images in the second row show severe imaging arti-
facts, especially for water. In the third row, the example with
strong cross talk between the chromophores and scattering
amplitude is given. The oxyhemoglobin image suffers from
significant cross talk of water and scattering, the water image
shows cross talk of scattering and deoxyhemoglobin, and the
lipid image of water.

These findings can now be compared to reconstruction re-
sults obtained with the second set of wavelengths �Fig. 8�.
Again, the top row shows the results for the case in which the
mean absorption spectra are used for reconstruction. These
images are largely comparable to those of Fig. 7. The artifacts
at the rim of the water image are reduced. The images of the
second row are reconstructed using the combination of ab-
sorption spectra leading to strong image artifacts. Compared
to the corresponding images in Fig. 7, the artifacts are slightly
reduced. The last row presents the images for the combination
of absorption spectra that produces strong cross talk. But here
cross talk is nearly not visible and significantly lower than for
the first set of wavelengths.

ater lipid scattering amp.

900 nm. Top: Reconstruction with mean absorption spectra. Middle:
Fig. 7�. Bottom: Reconstruction showing strongest cross talk �same
ig. 7.
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To verify that these results hold also if noisy data is used
or reconstruction, different amounts of relative noise are
dded to the simulated measurement data before reconstruc-
ion. Relative noise up to 0.5% is applied, since for noise
evels of 1% and higher, the artifact errors for both sets of
avelengths are above 90%, i.e., the inhomogeneities are

ompletely buried by noise.
To come to a compact presentation of the results, the

enchmark values �x, �a, and �q are averaged over all 64
ombinations of different spectra. The results are shown in
ig. 9. Clearly, the advantage of reduced cross talk is still
alid for noisy data �left plot�, while artifacts and quantifica-
ion errors �not shown� are comparable in the presence of
oise.

Recapitulating the findings, we conclude that the intro-
uced new criterion for wavelength optimization leads clearly
o the intended minimization of cross talk, while artifacts and
uantification errors are comparable to sets of wavelengths
ptimized without that criterion.

Conclusion
he introduced method for the optimization of laser wave-

engths for CW DOT systems considers, in contrast to exist-
ng methods, the uncertainties in the absorption spectra of the
hromophores. The absorption spectra are essential for recon-
truction, if absorption and scattering should be distinguish-
ble in CW DOT. For each of the chromophores, four absorp-
ion spectra were compared, revealing significant deviations.
onsidering these deviations led to optimal sets of wave-

engths different from those determined ignoring the uncer-
ainties in the absorption spectra. It was demonstrated with
imulated data that reconstructions based on the new sets of
avelength are significantly more robust with respect to cross

alk, if the assumed absorption spectra deviate from reality.
Recently, Eames et al. published a method, also based on

he criteria of Corlu et al., to optimize sets with a much larger
umber of wavelengths than considered here.20 It is straight-
orward to include the criterion introduced here in this
ethod. Last, it should be noted that although this discussion

s focused on CW data, it is straightforward to apply the in-
roduced method to TD of FD measurements.
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