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Optical glucose sensing in biological fluids:
an overview
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Abstract. Recent technological advancements in the photonics indus-
try have led to a resurgence of interest in optical glucose sensing and
to realistic progress toward the development of an optical glucose
sensor. Such a sensor has the potential to significantly improve the
quality of life for the estimated 16 million diabetics in this country by
making routine glucose measurements more convenient. Currently
over 100 small companies and universities are working to develop
noninvasive or minimally invasive glucose sensing technologies, and
optical methods play a large role in these efforts. This article reviews
many of the recent advances in optical glucose sensing including op-
tical absorption spectroscopy, polarimetry, Raman spectroscopy, and
fluorescent glucose sensing. In addition a review of calibration and
data processing methods useful for optical techniques is presented.
© 2000 Society of Photo-Optical Instrumentation Engineers. [S1083-3668(00)01401-5]
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1 Introduction
It has become overwhelmingly clear that frequent monitoring
and tight control of blood sugar levels are requisite for effec-
tive management of Diabetes mellitus and reduction of the
complications associated with this disease.1,2 The pain and
trouble associated with current ‘‘finger-stick’’ methods for
blood glucose monitoring result in decreased patient compli
ance and a failure to control blood sugar levels. Thus, the
development of a convenient noninvasive blood glucose
monitor holds the potential to significantly reduce the morbid-
ity and mortality associated with Diabetes.3–9 The develop-
ment of such a sensor would also allow automated closed
loop control of cell culture processes which could lead to
more efficient and reproducible cell and tissue growth,10,11

and such a sensor would be useful for on-line process contro
in the agricultural industry.12,13

Recently, renewed interest in, and some significan
progress toward, noninvasive optical glucose sensing hav
come about due, in part, to the unprecedented availability o
new technologies. The proliferation of optical communication
systems has driven the photonics industry to produce chea
and reliable optical sources, detectors, and imagers, and th
availability of powerful computers has made possible the ap
plication of extremely complex and powerful data analysis
techniques.

Optical glucose measurement techniques are particularl
attractive for several reasons: they utilize nonionizing radia
tion to interrogate the sample, they do not generally require
consumable reagents, and they are fast. In this article, theo
retical considerations and recent progress in four optical glu
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cose sensing arenas will be reviewed including: infrared a
near-infrared spectroscopy, Raman spectroscopy, polarim
and fluorescence spectroscopy. Although optical approac
for glucose sensing are attractive, they are often plagued
lack of sensitivity and/or specificity since variations in optic
measurements depend on variations of many factors in a
tion to glucose concentration. Isolating those changes wh
are due to glucose alone and using them to predict gluc
concentration is a significant challenge in itself, and to so
extent all optical glucose sensing methods rely on solving
so called ‘‘calibration problem.’’ For this reason, this artic
will also discuss the calibration of optical glucose measu
ments and the advanced mathematical techniques which
been employed in attacking this hurdle. Finally, conclusio
about the near future of optical glucose monitoring will b
drawn.

2 Review of Diabetes Mellitus
Diabetes mellitus is a chronic systemic disease in which
body either fails to produce or fails to respond to the gluco
regulatory hormone insulin. Insulin is required in order f
cells to take up glucose from the blood, and in diabetics
defect in insulin signaling can give rise to large fluctuations
blood glucose levels unless proper management techniq
are employed. It is currently estimated that 16 million peo
in the US and 100 million people world wide suffer from
Diabetes mellitus, a disease for which no cure curren
exists.14 Of those afflicted, approximately 5% have what
known as type I diabetes, insulin-dependent diabetes mel
~IDDM !, or juvenile-onset diabetes.15 Type I diabetes is an
autoimmune disease in which the body’s own defenses
against it and destroy tissue, specifically the insulin-produc
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Table 1 Summary of diabetes mellitus.

Type of
diabetes

Management
strategy

Chronic effects

Acute effectsComplication Treatment

type I

Insulin
dependent

or
Juvenile-onset

Routine insulin
injections

or
insulin pump

Vascular disease none hyperglycemia leading to
ketoacidosis, coma, and deathHeart disease Diet

Kidney disease
(nephropathy)
Eye disease
(retinopathy)

Dialysis
transplant, diet
Laser coagulation of
neovascularizations

hypoglycemia
leading to
diabetic shock,
coma, and death

type II

Noninsulin
dependent

or
adult-onset

Diet

or

oral
medications

Anesthesia
(neuropathy)

Poor wound
healing

Close attention to
wounds—especially
foot care
Attention to
skin ulcers

hypoglycemia

nausea and
weakness
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b cells of the Islets of Langerhans in the pancreas. The resu
is an eventual inability to produce insulin. Though not well
understood, it is believed that both genetic and viral factors
may play a role in this process.15 The remaining 95% of dia-
betics suffer from type II diabetes, noninsulin-dependent dia
betes mellitus~NIDDM !, or adult-onset diabetes. Type II dia-
betics produce insulin, but for some reason the cells of thei
bodies do not respond properly to the hormone and fail to tak
up glucose appropriately. Both types I and II diabetes mellitus
can be diagnosed by measuring abnormally high blood glu
cose levels after a carbohydrate-rich meal.

Associated with diabetes mellitus are a host of secondar
complications which conspire to make the disease one of th
major killers in the US. Acute effects of diabetes result when
blood glucose levels either get too high~hyperglycemia! or
too low ~hypoglycemia!. During hyperglycemia, since the
body is unable to use glucose for energy, fats or proteins ar
metabolized for energy. The metabolism of these substance
results in the production of ketone bodies which are toxic in
sufficiently high levels and can result in ketoacidosis, coma
and even death. During episodes of hypoglycemia, the bod
feels weak and because no energy source is available, sho
and even coma and death may result.

Chronic complications of diabetes are not well understood
but seem to stem from prolonged hyperglycemia associate
with the disease. Effects on the circulatory system and its
blood vessels can cause damage to the organs and tissues
the body. Long-term complications of the disease include kid
ney disease, heart disease, blindness, nerve damage, and g
grene. These effects are not limited to either Type I or II
diabetes and, according to the National Institutes of Health
were the source of an estimated 137 billion dollars in associ
ated health care costs in 1995.14 Table 1 summarizes the man-
agement and effects of both types I and II diabetes mellitus

The goal of diabetes therapy is to approximate the 24 h
blood glucose cycle of a normal individual. Accomplishing
this goal requires intensive management of blood glucose lev
edical Optics d January 2000 d Vol. 5 No. 1
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els by frequent monitoring of blood glucose and treatm
with either diet, medication, or insulin injection. Currently th
only available method for monitoring blood glucose requir
the acquisition of a small blood sample via a ‘‘finger-stick
This method is inconvenient, messy, painful, and carries a
of infection, hence patient compliance is often low, and t
secondary complications of diabetes are often allowed
progress. One solution to this problem is the development
painless and convenient noninvasive optical glucose mon
which would allow for fast and frequent measures of blo
glucose levels. Many of the proposed techniques rely on s
ondary indicators of blood glucose such as interstitial flu
glucose, or aqueous humor glucose levels. The developm
of these devices is further complicated not only by a time l
but by the physiology of the disease itself. While second
glucose measures may or may not be well correlated to bl
glucose levels in normal individuals, they may be particula
problematic in diabetics. The malfunction of normal gluco
transport mechanisms and changes in peripheral vascula
are problems for many secondary measures, especially s
the progressive nature of the disease means that these
tionships may be changing with time. Given this, it is impo
tant to insure that a noninvasive glucose sensor works in
betic patients with abnormal physiology as well as in norm
patients.

3 Optical Absorption Techniques
Optical absorption techniques for quantification of glucose
based on selective absorption of light by the molecule wh
is described by the Beer–Lambert law:

I5I0e2eCL.

Here I 0 is the intensity of incident optical radiation,I is the
transmitted intensity,e is the molar extinction coefficient in
~mol/L!21 cm21 ~and is dependent on wavelength!, C is the
molar concentration, andL is the pathlength in cm. Measure



Optical Glucose Sensing in Biological Fluids
Fig. 1 Optical absorption spectra for glucose. (a) Midinfrared region extending from 1600 to 900 cm−1 or 6.25 to 11 mm and showing absorption
peak assignments. (b) Near-infrared region extending from 2.0 to 2.5 mm or 5000 to 4000 cm−1. Note that the magnitude of the three absorbance
peaks in the NIR region is much smaller.
a
r

o
h

e

r

s

e

n

o

e
f
e

h

da-
H,

ns,
are
ing
ab-
gen
ntial

tive
ble
rea-
ory

in
Refs.

ry

ros-

tial
se
in
e
d a

ec-
ns
pti-

2.5
ose
the
se
nd

ce
glu-
li-
his
ments are generally reported in absorbance,A5 log(I0 /I),
such that the absorbance of several species is additive. Optic
absorption spectroscopy for glucose quantification has gene
ally been restricted to either the midinfrared~MIR! or the
near-infrared~NIR! spectral region. Figure 1 shows examples
of both MIR and NIR optical absorption spectra for aqueous
glucose after water subtraction.

The MIR region of the spectrum ranges from 2.5 to 50mm
~4000–200 cm21!, and it is in this region that absorption
bands due to fundamental stretching and bending modes
the molecule may be seen. For this reason, spectroscopy in t
MIR or ‘‘finger-print’’ region is extremely useful for spectral
identification of compounds. However, the magnitude of
background absorption bands due to solution constituents lik
water severely limits the path length which can be used in
MIR transmission spectroscopy to a few hundred microns o
less.

Transmission spectroscopy in the MIR region as a mean
for quantifying glucose has been explored by Zeller et al. who
used a MIR spectrophotometer and glucose doped whol
blood in a 25mm ZnSe transmission cell to analyze several
glucose peaks between 8.5 and 9mm ~1175–1110 cm21!.16

Bhandare et al. also investigated the MIR using transmissio
spectrophotometry of phosphate buffer solutions containing
glucose and several other interfering components in order t
compare the effectiveness of single peak calibration, principa
component regression analysis, partial least squares regre
sion analysis, and artificial neural networks.8,17 Attenuated to-
tal reflection~ATR! MIR spectroscopy, a technique in which
a specialized crystal is used to probe the superficial surfac
layers of a sample, has also been suggested as a means
quantifying blood glucose and has been investigated by Heis
et al. in whole blood.18 Finally, Optiscan, Inc. has reported
using MIR spectroscopic measurements of glucose made wit
the body’s own heat emission as the MIR source.19

In contrast to the MIR region, the NIR region of the spec-
trum, which extends from 700 to 2500 nm~14 000–4000
cm21!, contains little specific information. Absorption bands
in this region are due to overtone vibrations of anharmonic
l
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fundamental absorption bands or to combinations of fun
mental absorption bands primarily associated with C–
O–H, and N–H stretching vibrations. For overtone vibratio
it is usually only the first, second, and third overtones that
seen, with the magnitude of the absorption peak diminish
substantially with overtone order. As mentioned, these
sorption bands are broad, are easily influenced by hydro
bonding and temperature effects, and demonstrate substa
overlap. Nonetheless, the region is attractive for quantita
spectroscopy since NIR instrumentation is readily availa
and the reduced absorption magnitude allows the use of
sonably large path lengths. An excellent review of the the
and assignment of NIR absorption bands can be found
Refs. 20 and 21 and has more recently been presented in
12 and 22.

Noninvasive quantification of blood glucose using the ve
NIR region ~700–1300 nm! was originally suggested by
Rosenthal who proposed to use NIR transmission spect
copy through the fingertip.3,23 Robinson et al. combined NIR
spectroscopy in this same wavelength region with par
least-squares~PLS! analysis and claimed noninvasive gluco
prediction through the finger with an accuracy of 20 mg/dL
diabetic patients.9 More recently, Danzer et al. used diffus
reflectance spectroscopy in this region and demonstrate
predictive error of 36 mg/dL.24 Although specific glucose
spectral peaks are hard to identify in this region of the sp
trum, particularly at physiological concentrations, it remai
popular with researchers because relatively inexpensive o
cal detectors and components can potentially be used.

The near-infrared region which lies between 2.0 and
mm has become increasingly popular for aqueous gluc
measurements. This region contains a relative minimum in
water absorption spectrum and readily identifiable gluco
peak information. This region has been utilized by Haala
et al. in an attempt to quantify glucosein vitro in whole
blood25 and by Marbach et al. who used diffuse reflectan
spectroscopy of the human lip in an attempt to measure
cosein vivo.26 Arnold et al. have demonstrated that the app
cation of Fourier filtering techniques to spectral data from t
Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1 7
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region is effective for quantifying aqueous glucose27–29 and
that digital filtering may also be used to correct for the tem-
perature sensitivity of the NIR spectrum.30 Since this initial
interest, several groups have demonstrated moderate succe
with this spectral region in quantifying aqueous glucose con
centrations ofin vitro phantoms of various complexity includ-
ing Shengtian et al.31 who used fat, protein, and glucose phan-
toms, Chung et al.32 who used mixtures of glucose, glutamine,
ammonia, lactate, and glutamate to simulate cell culture me
dia, Mattu et al.33 who used phantom solutions of bovine se-
rum albumin doped with glucose, and McShane et al.34 who
have been able to quantify glucose, lactate, and ammonia
cell culture media obtained from fibroblast cultures. Each of
these investigators utilized NIR spectroscopy measuremen
in the 2.0–2.5mm spectral region coupled with PLS multi-
variate calibration techniques which are described later in thi
article. Sensing sites proposed for NIR measurements includ
the fingertip,9,23,24the earlobe,19 the tongue,19 the lip,35 and the
forearm.19,36

Glucose sensing using near infrared spectroscopy is by n
means a simple problem. Glucose absorption peaks whos
magnitude is relatively small compared to a large aqueou
background spectrum often yield low signal-to-noise mea
surements. NIR spectral measurements are further plagued
a lack of repeatability. Near infrared spectra are sensitive to
host of factors including temperature,pH, and scattering. Ad-
ditionally, in vivo measurements may be susceptible to differ-
ences in skin pigmentation, hydration, blood flow, probe
placement, and probe pressure. Finally, it should be noted th
the NIR spectrum of glucose is very similar to that of other
sugars37 including, in particular, fructose which is often used
by diabetics as an alternative to glucose. Despite these diffi
culties, however, near infrared methods have demonstrate
significant promise in becoming a viable technique for nonin-
vasive glucose sensing.

4 Polarimetry
Polarimetric quantification of glucose is based on the phe
nomenon of optical rotatory dispersion~ORD! whereby a chi-
ral molecule in an aqueous solution will rotate the plane of
linearly polarized light passing through the solution. This ro-
tation is due to a difference in the indices of refractionnL and
nR for left- and right-circularly polarized light passing
through a solution containing the molecule. It occurs by virtue
of the molecule’s chirality or ‘‘handedness’’ by which we
mean the molecule has at least one center about which i
mirror image cannot be superimposed upon itself. In such
case, random orientation of molecules in solution will result
in a bulk difference innL and nR for the solution, and the
resultant phase shift between left- and right-circularly polar-
ized waves gives rise to a rotation of plane polarized light
passing through the solution. The angle of rotation depend
linearly on the concentration of the chiral species, the path
length through the sample, and a constant for the molecul
called the specific rotation. The net rotation is expressed a
f5alLC, whereal is the specific rotation for the species in
°dm21 ~g/L!21 at wavelengthl, L is the pathlength in dm, and
C is the concentration in g/L. Glucose in the body is dextroro-
tatory ~rotates light in the right-handed direction! and has a
specific rotation of152.6°dm21 ~g/L!21 at the sodiumD-line
8 Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1
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of 589 nm.38 Figure 2 is an ORD curve for glucose showin
specific rotation versus wavelength for light in the visible
near-infrared range.

At physiological concentrations and pathlengths of ab
1 cm, optical rotations due to glucose are on the order
5 millidegrees. A number of techniques for obtaining me
surements with this high degree of accuracy exist and ge
ally fall into two categories: those which utilize crossed p
larizers to measure rotation via amplitude changes,39–41 and
those which measure the relative phase shift of modula
polarized light passing through the sample.42,43 Figure 3 illus-
trates each of these approaches schematically. Figures~a!
and 3~c! represent optical systems for polarimetry based
the amplitude and phase techniques, respectively. Figures~b!
and 3~d! illustrate the resulting polarization and intensity si
nals which contain optical rotation information.

Advantages of polarimetric glucose sensing methods
clude the use of readily available visible sources, the c
comitant ability to use substantial path lengths in aque
solutions, and the prospect of miniaturizing the optical co
ponents required. Because skin tissue is a highly scatte
medium, noninvasive measurements through the skin are
erally plagued by a high degree of depolarization and a los
signal-to-noise. Even for red light, scattering is such tha
tissue thickness of 4 mm is sufficient to cause;95%
depolarization.44 For this reason, a number of investigato
have suggested the anterior chamber of the eye~the fluid-
filled space directly below the cornea! as a sight well suited
for polarimetric measurements since scatter in the eye is g
erally very small compared to other tissues. Figure 4 illu
trates one commonly proposed optical sensing path. The
terior chamber is filled with a fluid called the aqueous hum
which Pohjola reports has an age-dependent steady-state
cose concentration about 70% that of blood.45 A time-lag on
the order of minutes between blood and aqueous humor
cose concentrations has been reported by March et al.
performedin vivo measurements on rabbits.46,47More recently
it has been suggested that this time-lag may actually take
min as reported by Chou et al.48 While quantification of the
aqueous humor glucose time-lag in humans has not been
ported, algorithms that can compensate for a time delay

Fig. 2 Optical rotatory dispersion (ORD) curve for glucose. The spe-
cific rotation in °(g/L)−1 dm−1 is shown vs wavelength in nm. Adapted
from Ref. 39.
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Fig. 3 Amplitude and phase based polarimetry measurements. (a) In the amplitude approach light from a monochromatic source (Src) is passed
through a linear polarizer (P1), a polarization modulator (Mod), a sample (Sam), and a second linear polarizer perpendicular to the first (P2) before
being recorded by a detector (Det). (b) The resulting polarization vector and observed intensity are symmetric when no optically active sample is
present and asymmetric if the sample is optically active with net rotation f. (c) In the phase approach, polarization modulated sample and
reference beams are split by a beam splitter (BS), passed through crossed linear polarizers (P2, P3), and recorded by separate detectors (Det1, Det2).
(d) A rotation of polarization by the sample causes a phase shift between the intensity signals recorded by the two detectors.
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March was the first to suggest optical glucose measure
ments in the eye using an open-loop, amplitude base
polarimeter.46 Coté later developed a phase measurement po
larimeter in order to increase the signal-to-noise of the polar
imetry measurement which he demonstratedin vitro.42 Goetz
used an amplitude-based design and improved upon it b

Fig. 4 Optical sensing in the anterior chamber of the eye. Light pass-
ing through the anterior chamber of the eye interacts with the aqueous
humor. A commonly proposed beam path is shown.
- implementing a closed-loop feedback control which increa
stability of the optical measurement39 and demonstrated
in vitro sensitivity on the order of a few millidegrees. Cam
eron later adapted this system to use digital feedback con
in order to further increase the robustness and stability of
system49 and demonstrated measurement of glucose in aq
ous cell culture media.50 King et al. have utilized an
amplitude-based approach in which the two polarizat
modulators required in the systems of Goetz and Came
were replaced by a single Pockel’s cell.51

Potential problems with polarimetric glucose sensing in
eye include optical rotation due to the cornea, birefringence
the cornea, the presence of other optically active confound
~for example ascorbate, albumin, and the aforementio
fructose! in the aqueous humor, and saccadic motion artifa
which could give rise to pathlength fluctuations. Proble
related to corneal rotation and rotations due to other c
founders could potentially be solved by using multiple wav
lengths for polarimetric measurements since optical rotati
due to multiple species exhibit linear superposition.52,53 King
et al. demonstratedin vitro elimination of confounders using a
multiwavelength system with two HeNe lasers at 594 and 6
nm,51 and more recently Cote´ et al. have used diode lasers
670 and 830 nm in a digital closed-loop system.54 The prob-
lem of corneal birefringence might be suitably addressed w
the use of appropriate optics46 or by using multiple wave-
lengths. Alternatively, a polarization system designed to
tract the full Jones or Mueller matrix for the system could
used to separate out specific rotation from birefringence.55
Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1 9
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5 Raman Spectroscopy
Raman spectra are observed when incident light at frequen
v05c/l0 is inelastically scattered at frequenciesv06v i . The
loss~Stokes shift! or gain~anti-Stokes shift! of photon energy,
and hence frequency, is due to transitions of the rotational an
vibrational energy states within the scattering molecule. Th
observed shiftsv i are independent of the excitation frequency
v0 and provide specific information about the chemical struc
ture of the sample. Since the Raman spectrum is independe
of excitation frequency, an excitation frequency may be cho
sen which is appropriate for a particular sample. It is impor
tant to note, however, that the intensity of Raman scattere
peaks generally falls off with decreasing frequency as a fun
tion of v0

4.
Raman spectroscopy has been used extensively as a t

for studying molecules of fundamental biological
importance56 and has been reviewed thoroughly as a tool fo
cancer detection.57 Like infrared absorption spectra, Raman
spectra exhibit highly specific bands which are dependent o
concentration. However, in the Raman case, overtone a
combination bands are much weaker making spectra simple
and the Raman spectrum of water is fairly weak which make
aqueous spectroscopy possible. On the other hand, the Ram
signal itself is weak and it is only with the recent availability
of highly sensitive charge-coupled device~CCD! arrays that
quantitative Raman spectroscopy of physiological glucose s
lutions has become feasible. While the increased availabili
and affordability of laser sources and detection systems f
Raman spectroscopy make the technique an important co
tender in the glucose sensing arena, development of a Ram
based glucose sensor also faces some large hurdles. A prim
drawback is the fact that scatter and reabsorption in biologic
tissues make detection of Raman shifts due to physiologic
concentrations difficult. For this reason, several investigato
have suggested the anterior chamber of the eye and the aq
ous humor as a sensing site for Raman spectroscopy.58–61

However, the power of laser irradiation required does pose
safety concern. Further, background fluorescence signa
which are often as large or larger than the Raman signal itse
are also a problem in biological media where proteins ar
present.57 Use of longer excitation wavelengths can circum-
vent this problem to some extent, but the intensity of th
Raman signal falls off dramatically as excitation wavelengt

Fig. 5 Typical Raman spectrum for aqueous glucose. The Stokes Ra-
man spectrum is shown as vibrational intensity vs shift in wave num-
bers from 514 nm excitation wavelength. The water background has
been subtracted.
10 Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1
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is increased. Figure 5 shows a Raman spectrum and s
peak assignments for aqueous glucose excited by 514 nm
gon ion laser light.

Examples of Raman spectroscopy for glucose quantifi
tion include work by Wang et al. who used water subtract
techniques to extract and quantify the glucose doublet shi
2900 cm21 in the presence of other confounders,61 work by
Goetz et al. who applied multivariate PLS regression to R
man spectra from aqueous mixtures containing glucose
other metabolites,62 work by Wickstead et al. who used Ra
man spectroscopy to quantify glucose in aqueous hum
samples,58 and work by Berger et al.63 and Lambert et al.64

who have applied PLS analysis to aqueous solutions cont
ing glucose and biological confounders. Dou et al. have a
presented measurement of glucose in water using a com
system which uses a semiconductor laser and a band-
filter to measure the intensity of a single Raman band.65 Tarr
et al. have proposed the use of stimulated Raman emissio~a
technique in which a second ‘‘probe’’ beam separated in f
quency from the main excitatory pump beam by a Stokes s
is used to enhance a single Raman resonance! for detection of
glucose in the aqueous humor of the eye.59,66As in the case of
NIR spectroscopic quantification, the emergence and com
tational accessibility of PLS and powerful preprocessi
methods is increasing the quantitative ability of Raman sp
troscopy. Berger et al. have demonstrated that incorpora
of pure component spectra into the calibration model is use
for quantitative Raman spectroscopy67 and Spiegelman et al
have demonstrated the power of wavelength selection rout
on Raman spectra of aqueous glucose solutions.68

6 Fluorescent Techniques
A number of novel fluorescence-based techniques for gluc
sensing have been presented. Those which seem to have
onstrated the most promise generally fall into two categor
the glucose-oxidase based sensors and the affinity-bin
sensors. Sensors in the first category use the electroenzym
oxidation of glucose by glucose-oxidase~GOX! in order to
generate an optically detectable glucose-dependent sig
The oxidation of glucose and oxygen to form gluconolacto
and hydrogen peroxide is illustrated in Figure 6.

Several methods for optically detecting the products of t
reaction and hence the concentration of glucose driving
reaction have been devised. Since oxygen is consumed in
reaction at a rate dependent on the local concentration of
cose, a fluorophore which is sensitive to local oxygen conc
tration can also be used to quantify glucose concentration.
example, Schaffar and Wolfbeis immobilized GOX onto t

Fig. 6 The oxidation of glucose by glucose oxidase. Glucose and di-
atomic oxygen are consumed to form a gluconolactone and hydrogen
peroxide.
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Optical Glucose Sensing in Biological Fluids
end of a luminescence oxygen optrode in order to create
sensor whose luminescence was dependent on gluco
concentration.69 Moreno-Bondi et al. have presented an opti-
cal fiber glucose sensor created by attaching GOX to an oxy
gen sensor based on the dynamic quenching of the lumine
cence of tris~1,10-phenanthroline!-ruthenium~II ! cation by
molecular oxygen.70 More recently, Rosenzweig and Kopel-
man have improved the sensitivity of this glucose optrode by
using a photopolymerization process to incorporate GOX an
the oxygen indicator, onto the end of a small diameter optica
fiber.71 One drawback to GOX based sensors is that their re
sponse depends not only on glucose concentration but on lo
cal oxygen tension as well. Li et al. have proposed a dua
fiber-optic fluorescence sensor which incorporates oxyge
sensing into a GOX based fluorescent sensor.72 Fluorescence
quenching of a Ruthenium dye by oxygen is measured at tw
chemistry sites one of which contains GOX and hence de
creased quenching depending on the concentration of glucos
The sensing sites are affixed to the end of an imaging fiber
bundle and a CCD camera is used to simultaneously measu
fluorescence at each site.72

Other more elaborate GOX based fluorescent sensors ha
also been proposed. For example, Gunsingham et al. used t
redox mediator tetrathiafulvalene~TTF! whose oxidized form
TTF1 reacts with the reduced form of GOX to reversibly
form TTF0. SinceTTF1 absorbs in the 540–580 nm range, a
means for quantifying the presence ofTTF1 ~and hence glu-
cose driving the production of reduced GOX! is available.73

Abdel-Latif et al. have used a scheme in which hydrogen per
oxide (H2O2) generated from the GOX reaction with glucose
reacts with bis~2,4,6-trichlorophenyl! oxalate~TCPO! to form
a peroxyoxylate.74 In this approach, the peroxyoxylate formed
transfers chemiluminescent energy to an accepting fluoro
phore which in turn emits photons at a characteristic wave
length. The emission by the fluorophore is proportional to
glucose concentration and can be detected optically.74

Fluorescent affinity-binding sensors utilize competitive
binding between glucose and a suitably labeled fluorescen
compound to a common receptor site. In initial work by
Shultz et al. immobilized concanavalin A~ConA! was used as
a receptor for competing species of fluorescein isothiocyanat
~FITC! labeled dextran and glucose.75,76 Increased concentra-
tions of glucose displace FITC-dextran from ConA sites thus
increasing the concentration and fluorescence intensity o
FITC-dextran in the visible field. In more recent work, this
group and others have exploited the phenomenon of fluores
cence resonance energy transfer~FRET! whereby an acceptor
in close proximity to a fluorescent donor can induce fluores
cence quenching in the latter. In one scheme, a tetramethy
rhodamine isothiocyanate~TRITC! label is added to the ConA
which causes quenching of bound FITC-dextran. Increasin
glucose concentration causes increased FITC-dextran di
placement and, hence, higher FITC fluorescence intensity.77

In another approach, these investigators have used FRET b
tween rhodamine-labeled dextran and FITC-labeled dextra
molecules bound to multiple receptor sites on the same Con
molecule as a means of quantifying glucose by the resultin
increase in FITC fluorescence caused by the presence
glucose.78 Lackowicz et al. used phase-modulation fluorim-
etry and FRET based dextran/ConA affinity sensor in order to
increase the reliability of absolute fluorescence
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measurements,79 and have more recently devised a simil
sensor in which ruthenium-ConA and maltose-insul
malachite green~MIMG ! are used as the reagents. Increas
glucose concentration causes an increase in both fluoresc
intensity and fluorescence lifetime of the ruthenium dye.80 In
general, fluorescence sensors offer the advantage that ca
made highly specific to glucose and eliminate many of
potential interferences common with other techniques. Ho
ever, they suffer the serious drawback that in all cases ex
enous chemistry is required which must be introduced to
body or sample. Additionally, this chemistry may be susce
tible to degradation over time via consumption, photoblea
ing, or denaturation.

7 Calibration Of Optical Measurements
In its simplest form, the calibration problem for optical glu
cose measurement can be stated: given a set of many op
measurements and corresponding glucose concentrations
velop a model which will allow prediction of glucose conce
tration based on analysis of future similar optical measu
ments. Though attempts at univariate regression analysis
single-wavelength prediction of glucose have been made,16,23

it is well established that such methods are of little use
complex biological media where several varying compone
with overlapping spectral features exist. In such a case, m
tivariate calibration methods are employed which use multi
measurements at each particular glucose concentratio
eliminate the effects of confounders. Several of these meth
are based on a least squares solution to the multivariate
bration problem and will be discussed briefly here in the co
text of glucose quantification. Excellent sources of inform
tion on the formulation and application of multivariat
calibration statistics to optical spectroscopic data may
found in McClure,81 Martens and Næs,82 Heise and
Marbach,18 Burns and Ciurczak,22 or Haaland and Thomas.83

The simplest approach for applying multivariate calibr
tion techniques to spectral data is the so-called classical le
squares~CLS! or K -matrix approach. In this formulation, ob
served spectra are assumed to be measured respons
known concentrations ofp analytes:A5KC whereA is the
m3n matrix of m-point column spectra forn samples,C is
thep3n matrix of concentrations forp analytes inn samples,
and K is the m3p matrix relating observed absorbance
each wavelength to analyte concentration. As an exam
consider the simplest case for one analyte and two spe
measurements at two wavelengths.

The problem can be represented by the following equati

FA1
l1 A2

l1

A1
l2 A2

l2G5F kl1

kl2
G @c1 c2# ,

where A values represent the observed absorption at e
wavelength for each known concentrationc, and thek values
are the unknown model parameters relating absorbanc
analyte concentration. In this case, postmultiplying both si
by CT5@c1c2#T and then postmultiplying both sides by th
inverse ofCCT ~which is guaranteed to be nonsingular wh
the columns ofC are linearly independent! yields a solution
for K :
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K5F kl1

kl2
G5FA1

l1c11A2
l1c2

A1
l2c11A2

l2c2
G 1
c1

21c2
2 .

For subsequent measurements we reformulate the problem
calculate an estimator ofc from a new spectrumA* and the
model response matrixK . In this simple case we can write
~using the same procedure as above!:

ĉ5
kl1

A0
l11kl2

A0
l2

kl1

2 1kl2

2 .

In the overdetermined case wheren.p, the least-squares
model solution forK is found from the response matrix and
the pseudoinverse of the concentration matrixK
5ACT(CCT)21; concentrations of subsequently analyzed
mixtures are predicted as

ĉ5~KTK!21KTa.

In this case, exact knowledge of the analyte concentrations i
the calibration standards is assumed and all error is attribute
to the measured responses. In the case of optical spectrosco
in biological samples, this is not a particularly valid assump-
tion since spectral measurements with a high signal-to-nois
are possible, but analysis of calibration samples is often im
practical or prone to significant error. An alternate formula-
tion proposed by Brown et al.84 is to assume that the mea-
sured responses are accurate and all errors are found in t
matrix of calibration concentrations. This so-called inverse
least-squares~ILS! or P-matrix approach is formulated:C
5ATP, whereC andA are as before andP is now the sensi-
tivity matrix for the inverse problem. The prediction model
for subsequent observations is

ĉT5aT@~AAT!21AC# .

This approach is difficult to implement in practice, however,
since well-conditioned solutions require an orthogonal set o
calibration mixtures and restrictions on the number of spectra
wavelengths which may be used.83,84

In an attempt to overcome the limitations of both of these
methods, Wold et al. suggested the technique of partial leas
squares~PLS! regression.85 Originally developed as a method
for modeling complex econometric data, PLS has becom
overwhelmingly popular in optical spectroscopy and chemo
metric analysis. PLS regression is similar to principal compo-
nent regression~PCR! in that matrix decomposition tech-
niques are used to model the response matrixA. However, in
PLS, this decomposition is combined with a regression mode
which attempts to optimize correlation with the concentration
matrix C. In PLS, observations inA are decomposed into a
number of latent variables or ‘‘factors’’ which are then used
as predictors in the regression model. Increasing the numbe
of factors used allows for modeling of more complex solu-
tions with multiple varying components, while reduction in
the number of factors helps to filter spectral noise and preven
over fitting of the data. One way to perform this analysis is to
use a form of singular value decomposition~SVD!. This
method can be illustrated for a single analyte as follows. Firs
assume that the measured spectral response to several so
tions with known concentrations of a single analyte are con
12 Journal of Biomedical Optics d January 2000 d Vol. 5 No. 1
o

y

e

-

l

r

t

lu-

tained in the columns of the response matrixA and that the
corresponding concentrations reside in the row vectorc. Ai j is
the measured response at thei th wavelength due to the ana
lyte concentrationcj .

A5FA11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43

G c5@c1 c2 c3# .

We then wish to formulate a predictive model relatingc to A.
The matrixATA is guaranteed to be full-rank and this is us
to formulate the pseudoinverse in the ILS approach. Howe
A may contain substantial noise, such that the condition nu
ber ofATA is not good, and much of the variation inc may be
described by a few trends or factors inA. The matrixA can
always be rewritten using a singular value decomposition86

A5USVT5UF s1 0 0

0 s2 0

0 0 s3

0 0 0
GVT,

where U is a m3m ~in this case434! orthogonal matrix
called the left singular values~LSV! matrix, V is ann3n ~in
this case333! orthogonal matrix called the right singula
values~RSV! matrix, andS is anm3n matrix with off diag-
onal elements equal to zero ands1>s2>...sn>0. One of
the features of PLS is that information from thec matrix is
utilized in the singular value decomposition as well, and
SVD is iteratively performed on the covariance matr
cATAcT such that the resultingS matrix is upper triangular. In
this case, the decomposition represents an eigenvalue de
position of theA matrix with respect to the concentratio
matrix.

In PLS parlance, the LSV matrixU is the ‘‘PLS loading’’
matrix and can be used to calculate the ‘‘PLS scores’’ ma
T5UA. The scores and loading matrices are then used
reconstruct an estimator of the originalA matrix which should
contain only the variations most relevant to the variation inc:

Ã5UTT5UTUA.

If the full U and T matrices are used, the reconstructi
should be exact, however, in PLS, usually only the first s

eral rows of these matrices are used andÃ is an estimate ofA.
The number of rows ofU and T which are used to produce
this estimator is termed the number of factors included in
model. It should be noted that for row spectra, the roles oU
and V are reversed. The PLS regression coefficients for
model are calculated by

b5V~S21!UTc,

where again the number of rows ofU and V used are the
number of factors included in the model. Finally, we come
with the estimates for concentration as:

ĉ5Ãb.



Optical Glucose Sensing in Biological Fluids
Fig. 7 NIR spectra of aqueous glucose solutions before (a) and after (b) application of Fourier filtering. The filter has the effect of enhancing glucose
specific information by removing baseline offsets and high frequency noise. Adapted from Ref. 96.
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The inclusion of more factors makes the reconstructedÃ ma-
trix closer toA and hence may fit the calibration data better.
Alternatively, reducing the number of factors used to con-

struct Ã decreases the influence of noise and may result in
more stable model which is less prone to over fitting of cali-
bration data. Judicious selection of latent variables is key to
the success of the PLS technique and has been the object
several articles.68,87–89

Recently, PLS methods have become particularly powerfu
due to their combination with complex spectral data prepro
cessing routines such as multiplicative scalar correction
~MSC!,90 Fourier filtering techniques,27–30,33,88,91,92and time-
domain filtering,93 to name a few. Of particular note is the
development of filter optimization routines which depend on
the iterative search for spectral filter parameters which opti
mize the results of the PLS calibration model.28,93,94While the
use of Fourier transform filtering and reconstruction of spectra
was first introduced by McClure et al., its use was primarily
intended as a means of data reduction.95 Coupling of iterative
filter optimization routines and PLS is extremely computation
intensive, and only recently has the availability of high-end
computational platforms led to wide spread use of this
technique.26,27,28,92–94

Figures 7~a! and 7~b! illustrate the power of Fourier filter-
ing in the preprocessing of data. Figure 7~a! shows water
subtracted NIR spectra for several aqueous glucose solution
collected with a fiber-optic probe. Baseline shifts and noise
make identification of glucose absorption bands impossible in
all but the highest concentration spectra.@Compare these to
the spectrum in Figure 1~b!.# Figure 7~b! shows the same
spectra after Fourier filtering. The filter has the effect of en-
hancing glucose specific information by removing baseline
offsets and high frequency noise. The design and use of dig
tal filters for preprocessing of spectra has been presented b
Arnold and Small,27,28 McShane,68,88 and others.30–33,94

Another family of popular spectroscopy calibration tools
are the so-called ‘‘wavelength selection’’ algorithms. The
f

s

-
y

purpose of these techniques is to reduce a set of spectral
surements to a smaller number of data points which yield
optimal calibration model. In other words, they seek to ex
cate spectral regions which contain useful quantitative inf
mation and reject those which do not contribute substanti
to an effective model. A number of methods for waveleng
selection have been reported in the literature including sim
lated annealing,97,98 genetic algorithms,99–101 and iterative
methods based on response variance.88 In Figure 8, an ex-
ample of the latter technique is presented. Shown are a typ
raw spectrum, the Fourier filtered spectrum, and the wa
lengths identified by the algorithm~heavy-set regions! as be-
ing most useful for prediction of glucose concentration. R
input spectra are first Fourier filtered to remove noise a
offsets. The resulting spectra are then fed into an itera
program which sequentially selects wavelengths which sh
largest variance and uses each in a PLS regression model

Fig. 8 Wavelength selection for NIR spectra. After Fourier filtering of
the raw NIR absorption spectrum, an iterative wavelength selection
algorithm determines wavelengths which are most useful for predic-
tion. Adapted from Ref. 88.
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prediction statistics are used to determine the point at whic
no additional helpful information is available.

It is important to mention that iterative selection of digital
filters for spectral preprocessing, wavelength selection rou
tines, and the generation of the PLS model itself are ex
tremely computation intensive. Exploration of the many per-
mutations of preprocessing, selection, and calibration has on
recently become possible with the arrival of readily available
high-end computing power.

8 Conclusions
Over the last thirty years, significant efforts have been ex
pended toward the development of an optical glucose sens
which still has not materialized. This continued enthusiasm in
the face of a problem which has turned out to be exceedingl
complicated is no doubt a reflection of the incredible benefits
of such a sensor, namely, that it holds the potential to be fas
nonconsumable, and noninvasive in nature. While such a se
sor is still at least several years from reality, the progress
which has been made is very real. Chemometric method
originally developed for other applications have matured into
viable tools for analysis of spectroscopic data from complex
biological media. This maturation is due not only to continued
experience with these tools, but to the availability of the in-
creased computing power needed to explore the many po
sible permutations of their application. Simultaneously, the
proliferation of optical technology in other fields continues to
result in improvements in instrumentation which will eventu-
ally make optical glucose sensing possible. A noninvasive
glucose sensor for diabetic home monitoring is one importan
application for an optical glucose sensor, however it is likely
that the somewhat simpler problem of glucose sensing in
other biological matrices like cell culture media will probably
come to bear first. We also expect that the first optical glucos
sensors for diabetic monitoring will serve as adjunct sensor
whose reliability will still be routinely verified by traditional
glucose measurements. Nonetheless, given the strides
methodology, instrumentation, and understanding of the prob
lem to be faced, it is likely that a noninvasive optical glucose
sensor may well exist within the next twenty years. Further-
more, it is reasonable to expect that more than one optica
approach will result in a successful sensor.
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