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Abstract. Hyperspectral imaging (HSI) is a powerful tool widely used for various scientific and industrial
applications due to its ability to provide rich spatiospectral information. However, in exchange for multiplex
spectral information, its image acquisition rate is lower than that of conventional imaging, with up to a few
colors. In particular, HSI in the infrared region and using nonlinear optical processes is impractically slow
because the three-dimensional (3D) data cube must be scanned in a point-by-point manner. In this study, we
demonstrate a framework to improve the spectral image acquisition rate of HSI by integrating time-domain HSI
and compressed sensing. Specifically, we simulated broadband coherent Raman imaging at a record high
frame rate of 25 frames per second (fps) with 100 pixels x 100 pixels, which is 10x faster than that of previous
work, based on an experimentally feasible sampling scheme utilizing 3D Lissajous scanning.
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1 Introduction

Hyperspectral imaging (HSI) is a powerful tool widely used in a
diverse range of applications, such as remote sensing,"* food
testing,” pharmaceutical testing,* forensic testing,” and disease
diagnosis,® as it can acquire spatially resolved spectral informa-
tion. In HSI, hyperspectral images are acquired by obtaining
the light intensities in the spatiospectral three-dimensional (3D)
(x,y,4) data cube via various methods, such as whisk broom
sensing (point-scanning to record spectral information of each
pixel with a diffraction grating and a linear sensor array),” push
broom sensing [line-scanning to record a one-dimensional (1D)
spectral image with a two-dimensional (2D) camera),® staring
sensing (spectral filtering of incoming light to record the images
of each spectral band with a 2D camera),” snapshot spectral
imaging (a nonscanning method to record the remapped 3D data
cube with a 2D camera),"” and compressed sensing (CS)-based
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coded aperture snapshot spectral imaging (CASSI)'** as shown
in Figs. 1(a)-1(c). Among them, the staring method is most
widely used in modern HSI applications because it is compat-
ible with on-the-fly spectral imaging, as its image acquisition
is easily performed with a 2D camera after spectral filtering by
a tunable filter.

However, the staring method often suffers from low light
transmittance and therefore limited signal-to-noise ratio (SNR)
especially in the infrared (IR) region due to the lack of sensitive
image sensors. Also the wide-field illumination of the staring
method is an impediment to nonlinear optical measurements,
which require high optical intensity at the sample to produce
a detectable signal. Similarly, CASSI cannot be applied to
nonlinear HSI due to its wide-field illumination. To overcome
these issues, it has been demonstrated that scanning in the
spatiotemporal space (x,y,7), or time-domain HSI, provides
a higher SNR by virtue of its multiplex advantage (also known
as Fellgett’s advantage) compared to direct measurements in
the spectral domain. Unfortunately, the major drawback of time-
domain HSI is its low image acquisition rate, primarily due to
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slow optical scanners for multidimensional spectral image
acquisition. Even with high-speed optical scanning using a res-
onant scanner, only up to 2.4 frames per second (fps) with a
pixel resolution of 100 pixels x 100 pixels has been realized."
To boost the image acquisition speed, one possible approach is
to combine time-domain HSI with CS''" [Fig. 1(b)], which
provides a technique to recover a complete data set from fewer
measurements than what is required by the Nyquist—-Shannon
sampling theorem based on two assumptions: (i) the signal from
the target object is sparse in a suitable domain and (ii) the mea-
surement process is incoherent; the sampling intervals along the
7 axis are randomized in the case of Fourier-transformation-
based measurements like time-domain HSI. Although CS has
been demonstrated for time-domain HSI, the methods imple-
mented in the previous demonstrations are not applicable to
high-speed hyperspectral image acquisition because the requi-
site sampling randomization was implemented during post-
measurement processing'® or was paired with a lower camera
frame rate."’

In this paper, we report a CS-powered method to achieve
high-speed time-domain HSI. Specifically, we used broadband
(200 to 1600 cm™!) Fourier-transform coherent anti-Stokes
Raman scattering (FT-CARS), a type of nonlinear Raman pro-
cess,'™™! as a platform to evaluate this method. We sampled
time-domain interferograms sparsely by utilizing the 3D
Lissajous scanning method™ to boost the hyperspectral image
acquisition rate and then reconstructed hyperspectral images
by solving an inverse problem regularized with spatiospectral
total variation (SSTV).”' We demonstrated hyperspectral image
acquisition at a frame rate of 25 fps with a pixel resolution of
100 pixels x 100 pixels under experimentally feasible condi-
tions, which is 10 times higher than that of the previous record."
We compared the original sinusoidal Lissajous scanning and
the triangular Lissajous scanning for CS-based high-speed
time-domain HSI in terms of noise robustness and achievable
compression ratios, showing that Raman hyperspectral images
were reconstructed with reasonable quality in both methods.
Because the present scheme is applicable to many realistic
Raman or HSI methods and these simulations are based on
existing experimental demonstrations that used commercially
available equipment, our method offers a powerful platform
for the video-rate visualization of rapid chemical processes in
various systems, such as inhomogeneous chemical reactions
and living cells.

Pushbroom (b)  Snapshot

(@) Whiskbroom

2 Methods

Figure 2(a) schematically shows the optical setup of our simu-
lated CS-based FT-CARS imaging system. The light source is
a femtosecond laser with a repetition rate of 80 MHz. In FT-
CARS measurements, molecular vibrations are coherently ex-
cited by a pump pulse and interrogated by a time-delayed probe
pulse.”> Pump—probe pulse pairs are generated by a Michaelson
interferometer, where the optical path length of one of the arms
is modulated by a resonant scanner. The incident beams are then
spatially scanned by the two galvanometric scanners for inter-
rogating different spatial points of the sample. A long-pass and
short-pass filter pair, placed before and after the sample, respec-
tively, isolates the blueshifted CARS signals. Just as in previ-
ously demonstrated FT-CARS measurements,”” the CARS
signal is acquired as a function of the pump—probe delay, which
is Fourier-transformed to obtain the Raman spectrum as a func-
tion of Raman shift or wavenumber.

In the present scheme, the (x,y,7) data cube was scanned
in a 3D Lissajous trajectory® such that the sampling interval
along the 7 axis became pseudorandom at each spatial point
[Fig. 2(b)]. To this end, there are several options for scanning
functions to generate the 3D Lissajous scanning trajectory, such
as triangular and sinusoidal functions, especially for the xy scan-
ning. Each of them has advantages and disadvantages in the
context of CS recovery. As discussed in the previous research,”
triangular functions are more advantageous than sinusoidal
functions in terms of the uniformity of the number of sampled
points in the xy plane, as shown in Fig. 2(c). On the other hand,
sinusoidal functions realize shorter pixel dwell time than tri-
angular functions because sinusoidally oscillating scanners,
such as a resonant scanner and a microelectrochemical system
scanner, can operate at higher frequencies. Because shorter pixel
dwell time leads to a more randomized sampling pattern along
the 7 axis at each pixel, as shown in the caption of Fig. 1(b),
more reliable CS recovery is expected."* We compared the per-
formances of triangular and sinusoidal scanning functions in the
following numerical simulations.

The procedure to reconstruct the hyperspectral image from
the sparsely sampled data is introduced as follows. First, we
define N,, Ny, and N, as the dimensions of the hyperspectral
image, N = N,N N, as the full size of data points in the spec-
tral domain, and M as the total number of sampled points in the
time domain. Let u = [uf ,---,uy » |T € C" be the hyper-
spectral image made by stacking the spectrum of each spatial

Fig. 1 Data acquisition of a 3D data cube in HSI. (a) Various scanning methods to obtain a 3D
data cube in HSI. The pixels measured during a detector integration period are depicted for each
scanning method. (b) Snapshot spectral imaging. (c) CASSI. (d) Data acquisition of CS-powered
HSI. The data points in the 3D data cube are partially sampled and then processed to reconstruct

the complete data set.
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Fig. 2 CS-based FT-CARS imaging. (a) Schematic of the simulated experimental setup. AL, ach-
romatic lens; APD, avalanche photodiode; CoM, concave mirror; L, lens; LPF, long-pass filter; P,
polarizer; PBS, polarizing beam splitter; RS, resonant scanner; S, sample; Sc, scanner; SPF,
short-pass filter; and 1/4, quarter-wave plate. (b), (c) Conceptual illustration of sinusoidal
(b) and triangular (c) Lissajous scanning trajectories in 3D space spanned by positions (x, y)
and optical delay z. Typical sampling patterns at one spatial point are shown in the caption bub-
bles. (d), (e) Distributions of the number of sampled points with sinusoidal scanning (d) and tri-
angular scanning (e) for xy scanning. The upper bound is set at 300 for both images.

position on top of one another and f = [f],,---.f} , ]T € R
be a stack of coarsely measured time-domain interferovgrams at
each spatial position. A hyperspectral image u was recon-
structed from the coarse time-domain signals f obtained with
Lissajous scanning by solving the following optimization prob-
lem with a regularization term called the anisotropic SSTV:*

@ = argmin{|Re[Wu] — f[|3 + A(|D.Dyul|, + [D;Dyull,)},

ueCV
(D
where W € CM*N is a measurement matrix and 1 € R is a

hyperparameter. D,, D,, and D, are differential operators
with respect to the x axis, the y axis, and the frequency axis,
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respectively, which act on each spectrum u,, € CN»
(p: 17...’Nx,q: 1""’Ny) as

Du - Uig =y (if p#N,)
e =0 (it p =N’
_ ) Upgt1 —Upy (if ¢ # Ny)
Dyu,4 = { 0 (if g=N,)’
(W g)pr1 = (), (if b#Ny)
(Dbup,q)b = {O Pq/b+l pa/b (lf b — NI;) )

where (u,,),(b=1,---,N,) represents the bth band of the
spectra u, .. W is a block-diagonal matrix containing inverse
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Fig. 3 Selection of the hyperparameter values. RMSE values as
a function of 1 are shown. The measurement duration is 40 ms.
Dashed lines represent the optimal values of 1.

nonuniform discrete Fourier transform (NDFT) matrices for
each pixel. The number of measurement points at each pixel
is made uniform at 300 by picking up measurement points ran-
domly or padding with zeros so that each diagonal element of
W has the same shape, which significantly accelerates the
multiplication of W and u. The value of hyperparameter A was
determined so that the value of the root-mean-squared error
(RMSE) between the ground-truth time-domain signals and
the pixel-wise inverse Fourier transform of the estimated spec-
tral image is minimized (Fig. 3). It is important to note that the
optimal value of 4 can be estimated by cross-validation even
if we do not know the ground truth. Equation (1) was solved
with the primal—dual splitting (PDS) algorithm.>** The PDS
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algorithm can solve optimization problems in the following
form:

min{f (u)

where G is a matrix and f, g, and A are the convex functions. f
is differentiable, whereas g and % do not need to be differentia-
ble. The algorithm is given by

ut = prox, ,{ul®) —y, [V f(ul
VD = prox, ,: {v(0) + y,G[2ulk+)

+9(u) + A(Gu)}, 2)

by + GTvM]}
—ut)

where y;,7, > 0 are step sizes, a proximity operator of a
function f is defined as prox,,(x) = argmin[f(y) +
y

3

(1/2y)||x —y||3], and a proximity operator of a conjugate
function of f is defined as prox,;(x) = X — yprox;/,(x/y).
Under mild conditions on f, g, A, and G, the sequence
{u®} converges to the optimal solution of Eq. (2) with arbitrar-
ily chosen u®and v(®). By letting f(u) = |Re[Wu] — f||3,
g=0, G=DD,, and h(v) = A||v||; where D = [D," D,T|T,
we obtain the calculation steps of the PDS algorithm to solve
Eq. (D),

W) — ulh) y, [WH(Re[Wul¥)] — ) + DIDTVY)
(v)( = v 4 2Dy [2u't4!) — ul)] NG
vED = (V)B — 8, (V)W /7,)]

where S, (a) = prox,., (a) = (a/|a]) max(|a| —y,0) is a soft-
thresholding function which acts on a vector component-wise.

3 Results

As a proof-of-concept demonstration, we simulated hyperspec-
tral image reconstruction with a simple artificial hyperspectral
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Fig. 4 Numerical simulation of recovering undersampled data. (a) Assumed spectrum of a chemi-
cal and its concentration map. (b) Typical spectrum and intensity map at 1000 cm~' of sparsely
sampled data obtained by pixel-wise NDFT without CS. (c), (d) Typical spectra and intensity maps
at 1000 cm™" of the hyperspectral images reconstructed via CS from time-domain signals coarsely
sampled with (c) sinusoidal Lissajous scanning (d) and triangular Lissajous scanning. The arrows
n (b)-(d) indicate the points whose spectra are displayed.
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image, shown in Fig. 4(a). We first determined the sinusoidal
Lissajous scanning trajectory by three sinusoidal functions with
scanning frequencies of f, = 12,705 Hz, f,, = 12,505 Hz, and
f+ = 12,520 Hz, and the triangular Lissajous trajectory by two
triangular functions with f, = 1005 Hz and f, = 1060 Hz and
a sinusoidal function with f, = 12,520 Hz, with a measurement
duration of 40 ms so that the trajectory covered a large number
of spatial positions and never repeated itself and the restricted
isometry constant of the measurement matrix was small. This
measurement duration was 10 times shorter than the corre-
sponding raster scan measurement. We assumed that one kind
of chemical with five Raman vibrational modes was spread in a
droplet-like concentration distribution shown in Fig. 4(a). Then
we sampled corresponding time-domain interferograms in the
generated Lissajous trajectory. Figures 4(b)—4(d) show the re-
sults of the hyperspectral image reconstruction with and without
CS. Simple pixel-wise NDFT of undersampled data failed to
recover the spectra due to aliasing, as shown in Fig. 4(b),
whereas five input peaks were recovered in the spectral image
reconstructed via CS [Figs. 4(c) and 4(d)].

To quantitatively evaluate the reconstruction performance,
we reconstructed spectral images from the sparsely sampled
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time-domain interferograms with different noise levels, different
compression ratios, and different scanning schemes (faster
sinusoidal and slower triangular). The reconstruction perfor-
mances were evaluated by the RMSE between the ground-truth
time-domain interferograms and the pixel-wise inverse Fourier
transform of the estimated spectral image. First, we investigated
the measurement-duration dependence of the reconstruction
performance in the sinusoidal and triangular scanning schemes
[Fig. 5(a)]. To simulate the reconstruction with different
measurement durations, the measurement duration was simply
changed with the same scanning frequencies in the sinusoidal
case, whereas the scanning frequencies were modified so that
the number of samples at each pixel became more uniform
in the triangular case. These simulation conditions are consistent
with the realistic experimental situation, where the frequency
of the resonant scanner cannot be significantly changed, while
that of the galvanometric scanner can flexibly be changed within
a certain frequency range. As seen in Fig. 5(a), the sinusoidal
scanning provides lower RMSE values with different mea-
surement durations than that of the triangular scanning, pre-
sumably because the sinusoidal Lissajous trajectory has more
randomized sampling intervals along the 7 axis at each pixel.
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Fig. 5 Performance of CS-powered time-domain HSI with different scanning functions.
(a) Performance of CS-powered time-domain HSI with different compression ratios. The top axis
represents the measurement time normalized by T .., the measurement time in the raster-scan
method. (b), (c) Intensity maps at 1000 cm~' and typical spectra with measurement durations of
30 ms with sinusoidal Lissajous scanning and triangular Lissajous scanning, respectively.
(d) Performance of CS-powered time-domain HSI with different values of noise amplitudes and
a measurement duration of 40 ms. (e), (f) Typical intensity maps at 1000 cm~" and typical spectra
with a noise amplitude of 0.5 with sinusoidal Lissajous scanning and triangular Lissajous scanning,
respectively. Arrows in (b), (c), (e), and (f) indicate the points whose spectra are displayed.
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Figures 5(b) and 5(c) show typical intensity maps at 1000 cm™!
and typical spectra for measurement durations of 30 ms with
sinusoidal Lissajous scanning and triangular Lissajous scanning,
respectively. Next, we studied the noise dependence of the recon-
struction performance by adding Gaussian noise to the input
time-domain interferograms [Fig. 5(d)]. The noise amplitude
was varied from zero to one with respect to the amplitude of
the 1000 cm~! mode of the sample. Although there are slight
differences in the performances of these two scanning functions,
both methods work well, as shown in Figs. 5(b), 5(c), 5(e),
and 5(f).

To further evaluate the performance of our method in prac-
tical applications, we also demonstrated the reconstruction of
a biological hyperspectral image in a semiexperimental manner
using a Raman spectral image of a Euglena gracilis cell taken
by a spontaneous Raman microscope (Renishaw inVia). A
31 pixel x 33 pixel Raman hyperspectral image of a wild-type
E. gracilis cell was obtained using 74 mW of 532 nm excitation,
a 50x objective, and a per-pixel measurement duration of
300 ms. The image was denoised by truncated singular value
decomposition using the top-10 components, and then spectral
background was removed using the rolling-ball filter method.”
We generated the time-domain interferograms by inverse
Fourier transforming the spectrum at each pixel after resizing
it to 100 pixels x 100 pixels and applying a window function.
The sinusoidal Lissajous sampling proposed above was used
with a measurement duration of 60 ms. Figures 6(a)-6(j) show
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typical intensity maps and spectra of the reconstructed spectral
image and the Fourier transform of the generated full-size time-
domain interferograms. Although the spatial resolution is de-
graded due to the use of total variation regularization, the same
molecular distributions between the reconstructed [Figs. 6(a),
6(c), and 6(e)] and ground-truth [Figs. 6(b), 6(d), and 6(f)] spec-
tral images and peak distributions among their corresponding
spectra [Figs. 6(g)—6(i)] are evident. Figure 6(k) shows the per-
formance of CS-based time-domain HSI for different measure-
ment durations.

4 Discussion

It is worthwhile to compare our scheme with other CS-based
HSI methods that operate in the frequency domain.”** To date,
the frequency-domain approach has used random masks™ or
Lissajous scanning® to randomly sample frequency or spatial
components; these reconstructions are only reliable when the
spectra are nonsparse because CS works well under the condi-
tion that signal sampling occurs in a nonsparse domain.”” On the
other hand, in our time-domain approach, spectra composed of
sharp peaks are preferred because the energy of such sharp
peaks is delocalized in the time domain. Thus FT-CARS spec-
troscopy is a suitable platform for CS because its spectra have a
sparse nature originating from the narrow molecular lines spread
in a broad spectral range and the absence of background signals
such as fluorescence.
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Fig. 6 Recovery of a spectral image of an E. gracilis cell by CS. (a), (c), (e) Intensity maps at 1000,
1300, and 1440 cm~! of hyperspectral images reconstructed via CS, respectively. (b), (d),
(f) Intensity maps at 1000, 1300, and 1440 cm~' of hyperspectral images obtained by Fourier
transform of generated time-domain interferograms, respectively. (g), (i) CS-reconstructed spectra
at the points indicated by arrows in (a) and (c), respectively. (h), (j) Fourier transform of the gen-
erated time-domain interferograms at the points indicated by arrows in (b) and (d), respectively.
(k) Performance of CS-based time-domain HSI for different measurement durations.
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In summary, we have numerically demonstrated CS-based
time-domain HSI with a spectral image acquisition rate of
10x higher than that of conventional raster scanning. By com-
bining the Lissajous-scanning—based sampling method and spec-
tral image reconstruction by SSTV, reliable Raman spectral
image reconstruction was realized for a simple synthetic bead
image and a cell image taken by a spontaneous Raman micro-
scope. We compared different scanning methods, faster sinusoi-
dal scanning, and slower triangular scanning and showed that
both schemes are feasible for acquiring Raman hyperspectral im-
ages at a video rate (with a measurement duration of 30 ms). The
present method requires only slight modifications to the existing
FT-CARS imaging setup and is extendable to other time-domain
HSI methods, such as FT-IR and FT-two-photon excitation.”®
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