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Abstract. Photoacoustic imaging (PAI), recognized as a promising biomedical imaging modality for preclinical
and clinical studies, uniquely combines the advantages of optical and ultrasound imaging. Despite PAI’s
great potential to provide valuable biological information, its wide application has been hindered by
technical limitations, such as hardware restrictions or lack of the biometric information required for image
reconstruction. We first analyze the limitations of PAI and categorize them by seven key challenges:
limited detection, low-dosage light delivery, inaccurate quantification, limited numerical reconstruction, tissue
heterogeneity, imperfect image segmentation/classification, and others. Then, because deep learning (DL)
has increasingly demonstrated its ability to overcome the physical limitations of imaging modalities,
we review DL studies from the past five years that address each of the seven challenges in PAI. Finally,
we discuss the promise of future research directions in DL-enhanced PAI.
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1 Introduction
Photoacoustic imaging (PAI) is a noninvasive and radiation-free
biomedical imaging modality that provides high spatial resolu-
tion, deep penetration, and great optical absorption contrast by
synergistically combining optics and acoustics.1 PAI is based on
the photoacoustic (PA) effect, in which optical energy from a
pulse laser is converted into acoustic energy waves by the light
absorption characteristics of biomolecules.2 The initial pressure
of a generated PA wave can be calculated as

p0 ¼ ΓμaηthF; (1)

where p0 denotes the initial pressure, Γ is the Gruneisen coef-
ficient, μa is the optical absorption coefficient, ηth is the effi-
ciency of heat conversion from the optical absorption, and F

is the optical fluence. Because acoustic scattering in biological
tissues is several orders of magnitude lower than light scattering,
PAI can obtain biomolecule information based on the absorption
contrast of light at a depth of several centimeters.3,4 PAI also
extracts the concentrations of intrinsic chromophores, such as
oxyhemoglobin (HbO), deoxyhemoglobin (HbR), melanin,
water, and lipids, using multispectral image processing.5–13

In particular, oxygen saturation (sO2), an important index for
evaluating various diseases, is calculated through HbO and
HbR values.14 By exploiting spectral characteristics, PAI can
analyze physiological functions such as sO2, blood flow, and
metabolic rates in preclinical and clinical research.4,15–17 For
example, the high sensitivity of PAI to hemoglobin has made
it valuable in preclinical studies of angiogenic diseases, tumor
hypoxia, and cerebral hemodynamics.18–20 Further, the use of
PAI is expanding into clinical research areas, such as thyroid
and breast cancer screening, lymph node biopsy guidance, tissue
examination, and melanoma staging.21–24 Not limited to endog-
enous chromophores, the high molecular sensitivity of PAI
enables molecular imaging when exogenous contrast agents
are administered.4 Biodistribution and pharmacokinetics in the
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body can be imaged in vivo through exogenous contrast agents
that generate PA signals.25–27 In this way, PAI is being used in
diagnosing cancer and brain diseases and monitoring their thera-
pies, in studying the organ accumulation of substances, and in
tracking the dissemination of drugs.8,28–30

Photoacoustic microscopy (PAM) and photoacoustic com-
puted tomography (PACT) are the main PAI modalities. PAM
is subdivided into two types, depending on which of the two
co-aligned acoustic and optical components is more tightly
focused.31–36 Optical resolution PAM (OR-PAM), which imple-
ments focused optical illumination on the acoustic focal area,
shows high spatial resolution (a few micrometers) and has been
applied to investigate small biological structures.37,38 Acoustic
resolution PAM (AR-PAM) uses a less tightly focused optical
beam than OR-PAM, but its acoustic focus is smaller than its
laser focus.39 AR-PAM achieves deeper light penetration (up to
several centimeters, compared to the 1 mm depth in OR-PAM)
despite its lower spatial resolution (tens/hundreds of microme-
ters), defined by the acoustic focus. PACT uses multiple detec-
tion positions to simultaneously reconstruct an image in 2D or
3D. It provides hundreds of images with micrometer-level
spatial resolution at imaging depths ranging in the tens of
millimeters. PACT uses a high-energy wide laser beam and an
ultrasound (US) transducer array (e.g., linear, ring-shaped, arc-
shaped, or hemispherical) to receive US waves generated by
laser illumination.3,21,40–42 Images are created by reconstruction
algorithms,43 such as delay-and-sum (DAS),44,45 delay-multiply-
and-sum (DMAS),46 backprojection (BP),47 Fourier beam form-
ing,48 time reversal (TR),49 and model-based methods.50,51

PAI has gained widespread recognition as a promising bio-
medical imaging modality for preclinical and clinical studies.
However, to fully realize PAI’s great potential, the seven
challenges listed in Table 1 and illustrated in Fig. 1 must be
addressed to further enhance the image quality and expand
PAI’s applications:

(1) The first challenge, overcoming limited detection
capability, arises because most PAI systems are still constrained
by such factors as restricted bandwidth, a limited detection view,
and sampling sparsity.59

(2) The second challenge is to compensate for low-dosage
light delivery. The PACT systems based on LEDs or laser diodes

are portable and cost-effective alternatives to bulky and expen-
sive solid-state laser systems. However, their low-dosage light
delivery provides only a low signal-to-noise ratio (SNR), which
can affect image quality. In the case of OR-PAM, fast scanning
with high repetition rates is necessary for certain applications
such as recording brain-wide neuronal activities.60 However,
to ensure laser safety, low laser dosages are required, resulting
in reduced SNRs and decreased image qualities.

(3) The third challenge is to improve the accuracy of
quantitative PA imaging. Accurately determining physiological
parameters remains a demanding task due to the complex and
nonlinear nature of light absorption and scattering.61

(4) The fourth challenge is to optimize or replace current
reconstruction methods, whose inherent limitations compromise
their accuracy and effectiveness in generating high-quality
images.

(5) The fifth challenge is to address the problems posed
by tissue heterogeneity. Local variations in the acoustical
properties of biological tissue can lead to inconsistencies in
the reconstructed PA images, resulting in artifacts that degrade
the accuracy of quantitative measurements derived from the
images.62

(6) The sixth challenge is to improve the classification and
segmentation accuracy of PA images. The limited availability of
annotated PAI data sets has hindered the development of auto-
mated image classification and segmentation, resulting in either
continued reliance on manual delineation by expert physicians
or the adaptation of traditional methods from other imaging
modalities.

(7) In addition to the six challenges mentioned earlier, there
are still specific issues, such as motion artifacts, limited spatial
resolution, electrical noise, image misalignment, accelerating
superresolution imaging, and achieving digital histologic
staining, which are also important for PAI studies. To ensure
a comprehensive understanding of the challenges in PAI, these
specific issues are categorized as a seventh challenge. These
seven challenges are summarized in Table 1.

Overcoming these challenges is important because relying
solely on hardware improvements will not be enough to resolve
them. It will require significant investments of time and resour-
ces to find effective solutions. Deep learning (DL) plays a cru-
cial role in advancing the field of medical and bioimaging by

Table 1 Summary of challenges facing PAI.

Section Title Challenges to be solved

3.1 Overcoming limited detection capabilities Restricted bandwidth, limited detection view, sampling sparsity

3.2 Compensating for low-dosage light delivery Low SNR in the low-dosage light-delivery system

3.3 Improving the accuracy of quantitative PA imaging Inaccuracy in quantitative estimates
(sO2, optical absorption coefficient)

3.4 Optimizing or replacing conventional reconstruction
algorithms

Limitations in conventional reconstruction algorithms

3.5 Addressing tissue heterogeneity Acoustic reflection and imaging artifacts led by tissue heterogeneity

3.6 Improving the accuracy of image classification
and segmentation

Inaccuracy and rough classification and segmentation of PA image

3.7 Overcoming other specified issues Motion artifacts, limited spatial resolution, electrical noise and
interference, image misalignment, accelerating superresolution
imaging, achieving digital histologic staining
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not only addressing the inherent limitations of imaging systems
but also by driving substantial improvements in classification
and segmentation performance. In recent years, DL has gained
significant traction in PAI research, leading to remarkable break-
throughs and achievements. This comprehensive review article
provides an in-depth analysis of diverse methodologies and
outcomes showcasing the utilization of DL techniques to
effectively address the seven challenges encountered in PAI,
as previously outlined.

2 Principles of DL Methods
DL is a subset of machine-learning algorithms that encompasses
supervised learning, unsupervised learning, and reinforcement
learning. Supervised learning is a modeling technique that es-
tablishes a correlation between input data and their correspond-
ing ground truth (GT). This approach is commonly utilized in
DL-enhanced medical imaging, where high- and low-quality
images can be paired. On the other hand, unsupervised learning

Fig. 1 Representations of seven major challenges in PAI, and DL-related methods to overcome
them. DAS, delay-and-sum; DL, deep learning; BF-H&E, bright-field hematoxylin and eosin stain-
ing. The images are adapted with permission from Ref. 52, © 2021 Wiley-VCH GmbH; Ref. 53,
© 2020 Optica; Ref. 54, © 2022 Optica; Ref. 55, © 2020 Elsevier GmbH; Ref. 56, CC-BY; Ref. 57,
© 2021 Elsevier GmbH; and Ref. 58, © 2021 Elsevier GmbH.
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identifies specific patterns hidden within data, without the use
of labeled examples or a priori known answers. Lastly, in
reinforcement learning, an algorithm maximizes the final reward
by learning through rewards obtained as a result of performing
specific actions in a particular environment. A notable example
of such a learning algorithm is AlphaGo, the first computer pro-
gram to beat a human champion Go player.63 Next, we explain
the basic structure of DL network and the basic operating prin-
ciple of DL training. In addition, we introduce the representative
DL architectures that are most widely used in the field of image
and video: convolution neural network (CNN), U-shaped neural
network (U-Net), and generative adversarial network (GAN)
architecture.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) draw inspiration from bio-
logical neural networks, wherein different stimuli enter neurons
through dendrites and are transmitted to other cells through
axons once a threshold of activation is achieved [Fig. 2(a)].
In ANNs, an artificial neuron is a mathematical function con-
ceived as a biological neuron. This function multiplies the vari-
ous inputs by each weight, sums them, and adds the deviation.

This sum is then sent to a specific activation function and
produces an output [Fig. 2(b)]. This artificial neuron is
expressed as

y ¼ σ ·

�
½x1 x2 … xn �

2
664

w1

w2

..

.

wn

3
775þ b

�
; (2)

where σ is the activation function, x is the input, w is the weight,
b is the variance, and y is the output. The calculated output
acquires nonlinearity through such activation functions (σ) as
sigmoid, hyperbolic tangent, and rectified linear unit.64 Without
such an activation function, it would be pointless to build a deep
model, since a linear transformation would occur regardless of
how many hidden layers are present.

ANNs typically have an input layer, a hidden layer, and an
output layer, each comprising multiple units. The number of
hidden layers between the input and output determines whether
the ANN is a simple neural network or a deep neural network
(DNN) [Fig. 2(c)]. Formulaically, the two networks in Fig. 2(c)
are described as

y ¼ w2ðσðw1 × xþ b1ÞÞ þ b2 ; (3)

and

y ¼ w4ðσðw3ðσðw2ðσðw1 × xþ b1ÞÞ þ b2ÞÞ þ b3ÞÞ þ b4: (4)

2.2 Backpropagation

Backpropagation serves as the fundamental principle for train-
ing DL models. In order to grasp the concept of backpropaga-
tion, it is necessary to first understand forward propagation.
Forward propagation involves sequentially passing an input
value through multiple hidden layers to generate an output.
For instance, given an input x, a weight w, a variance b, and
an activation function σ, the DNNs’ forward propagation on
Fig. 2(c) is represented as

y� ¼ w4ðσðw3ðσðw2ðσðw1 × xþ b1ÞÞ þ b2ÞÞ þ b3ÞÞ þ b4; (5)

Fig. 2 The concept of (a) a biological neural network and (b) an ANN derived from (a).
(c) Schematics of a simple neural network and a DNN.
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where y� represents the value predicted by DNNs. The process
of finding the optimized w and b variables that minimize the
loss, which is the difference between the predicted result and
the actual y, is called training. The loss is calculated for all
training data sets. As loss-function metrics, image data sets
such as PA images commonly employ the structural similarity
index measure (SSIM) and peak-signal-to-noise ratio (PSNR).
Backpropagation refers to the process of transmitting the loss
back to the input stage using the chain rule.65,66 This process
determines the weight w that yields the minimal loss function
value. Most DL models adopt the gradient descent technique
throughout this procedure.67 By calculating the gradient at a spe-
cific w and continually updating w, the loss function’s minima
can be estimated using the following equation:

wtþ1 ¼ wt − gradient × learning rate: (6)

The learning rate, a hyperparameter that determines the
variable’s update amount in proportion to the calculated slope,
is set before the learning process and remains unchanged. The
number of hidden layers and their dimensions are also hyper-
parameters. In the following section, we introduce representative
ANN architectures commonly used in biomedical imaging, in-
cluding PAI.

2.3 CNN

CNNs, the most basic DL architecture, have received significant
attention in the field of PAI due to their extensive use in image
processing and computer vision. CNNs were developed to ex-
tract features or patterns in local areas of an image. A convo-
lution operation is a mathematical process that measures the
similarity between two functions. The convolution operation
in image processing is the process of calculating how well a
subsection of an image matches a filter (also referred to as a
kernel) and is used for things such as edge filtering. In CNN,
the network is trained by learning this filter, which is used to
extract image features, as a weight. The encoder–decoder CNN
architecture is a relatively simple network structure capable
of performing image-to-image translation tasks [Fig. 3(a)].68

Initially, the input image undergoes a series of downsampling
and convolution operations. Throughout this process, the dimen-
sions of the image progressively decrease while the number of
image channels, representing an additional dimension, increases.

This results in a bottleneck in the representation, which is
subsequently reversed through a sequence of upsampling and
convolutional operations. The bottleneck enforces the network
to encode the image into a compact set of abstracted variables
(also referred to as latent variables) along the channel dimen-
sion. The predicted image is synthesized by decoding these
variables in the second half of the network.

2.4 U-Net

A U-Net [Fig. 3(b)] is a CNN-based model that was originally
proposed for image segmentation in the biomedical field.69 The
U-Net is composed of two symmetric networks: a network for
obtaining overall context information of an image and a second
network for accurate localization. The left part of the U-Net is
the encoding process, which encodes the input image to obtain
overall context information. The right part of U-Net is the de-
coding process, which decodes the encoded context information
to generate a segmented image. The feature maps obtained dur-
ing the encoding process are concatenated with up-convolved
feature maps at each expanding step in the decoding process,
using skip connections.70 This enables the decoder to make more
accurate predictions by directly conveying important informa-
tion in the image. As a result, the U-Net architecture has shown
excellent performance in several biomedical image segmenta-
tion tasks, even when trained on a very small amount of data,
due to data augmentation techniques.

2.5 GAN

A GAN is a type of generative model that learns data through
a competition between a generator network and a discriminator
network [Fig. 3(c)].71,72 The generator network generates the
fake data, and the discriminator network tries to distinguish
the real data from the fake data. To deceive the discriminator,
the generator aims to generate data that look as realistic as pos-
sible, while the discriminator attempts to distinguish the real
data from the realistic fake data. Through this competition, both
networks learn and improve iteratively, resulting in a generator
that can generate increasingly realistic data. As a result, GANs
have been successful in generating synthetic data that are very
similar to real data, making them useful for applications such as
data augmentation and image synthesis. These three represen-
tative networks are summarized in Table 2.

Fig. 3 Three typical neural network architectures for biomedical imaging. (a) CNN, (b) U-Net, and
(c) GAN.
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3 Challenges in PAI and Solutions through
DL

3.1 Overcoming Limited Detection Capabilities

In PAI, optimal image quality requires a broadband US trans-
ducer and dense spatial sampling to enclose the target.43,61,73

However, real-world scenarios introduce limitations, such as
limited bandwidth, limited view, and data sparsity. DL methods
have been used as postprocessing techniques to overcome these
limitations and enhance the PA signals or images, reducing ar-
tifacts. This section provides an overview of studies utilizing DL
methods as PAI postprocessing methods. The DL-based image
reconstruction studies are discussed separately in Sec. 3.4.

3.1.1 Limited bandwidth

The bandwidth of US transducer arrays is limited compared to
the natural broadband PA signal (from tens of kilohertz to a hun-
dred megahertz).74 Although optical detectors of PAwaves have
expanded the detection bandwidth, manufacturing high-density
optical detector arrays and adopting them to PACT remains a
technical challenge.75

To solve the limited-bandwidth problem, Gutte et al. pro-
posed a DNN with five fully connected layers to enhance the
PA bandwidth [Fig. 4(a)].76 The network takes a limited-band-
width signal as input and outputs an enhanced bandwidth signal,
which is then used for PA image reconstruction using DAS. To
train the network, the authors generated numerical phantoms
using the k-Wave toolbox79 to create pairs of full-bandwidth
and limited-bandwidth PA signals. The synthesized results from
the numerical phantoms demonstrated an enhanced bandwidth
that is like that of images obtained from the full-bandwidth
signal [Fig. 4(a)].

3.1.2 Limited view

PA image quality is reduced by the scant information provided
by the limited coverage angle of the PA signals detected by
the US transducer.3 This problem is commonly encountered in
PACT systems, particularly in linear US array-based systems
and is referred to as the “limited view” problem.75,80 Researchers

have addressed this problem to some extent by developing
reconstruction methods with iterative methods.80 Recent studies
based on the fluctuation of the PA signal of blood flow or
microbubbles81,82 show another effective solution, but they need
a number of single images to reconstruct one fluctuation image,
which compromises the temporal resolution.

Deng et al.83 developed DL methods using U-Net and prin-
cipal component analysis processed very deep convolutional
networks (PCA-VGG)84 while Zhang et al.85 designed a dual
domain U-Net (DuDoUnet) incorporating reconstructed images
and frequency domain information. In addition to utilizing the
U-Net architecture, researchers have also explored the use of
GAN networks, which have garnered attention due to their
ability to preserve high-frequency features and prevent over-
smoothing in images. Lu et al. proposed a GAN-based network
called the limited view GAN (LV-GAN).77 Figure 4(b) shows
the architecture of LV-GAN, which consists of two networks:
the generator network responsible for generating high-quality
PA images from limited-view images, and the discriminator
network designed to distinguish the generated images from the
GT. To ensure accurate and generalizable results, the LV-GAN
was trained using both simulated data generated by the k-Wave
toolbox and experimental data obtained from a custom-made PA
system. The results presented in Fig. 4(b), using ex vivo data,
demonstrate the ability of LV-GAN to successfully reconstruct
high-quality PA images in limited-view scenarios. The quanti-
tative analysis further confirms that LV-GAN outperforms the
U-Net framework, achieving the highest retrieval accuracy.

The combination of a postprocessing method with direct
processing using PA signals is considered as another approach
to reduce artifacts in limited-view scenarios. Lan et al.78

designed a new network architecture, called Y-net, which recon-
structs PA images by optimizing both raw data and recon-
structed images from the traditional method [Fig. 4(c)]. This
network has two inputs, one from raw PA data and the other
from the traditional reconstruction. It combines two encoders,
each corresponding to one of the input paths, with a shared
decoder path. The training data were generated by the k-Wave
toolbox with a linear array setup. The public vascular data set86

was used to generate PA signals. They compared the proposed

Table 2 Three representative networks.

Network Key feature Use case

CNN Performs convolution operation for feature extraction. Image enhancement

Exhibits outstanding performance in feature extraction. Image classification and object detection

Captures spatial information of input data efficiently. Image segmentation

U-Net Comprises an encoder–decoder structure. Image enhancement

Utilizes skip connections to leverage high-resolution feature maps.

Demonstrates strong performance even with small data sets. Image segmentation

Excels in segmentation tasks.

GAN Consists of a generator network and a discriminator network. Image generation

Generates data that closely resembles real input data (generator).

Discriminates between generated data and real data (discriminator). Image style transfer

Engages in competitive training between the generator and discriminator. Image/data augmentation

Applies for generating new data.
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method with conventional reconstruction methods [e.g., DAS
and time reversal (TR)] and other DL methods such as U-Net.
In in vitro and in vivo experiments, the proposed method
showed superior performance to the other methods, with the
best spatial resolution.

3.1.3 Sparsity

To achieve the best image quality, the interval between two ad-
jacent positions of the transducer or array elements must be less
than half of the lowest detectable acoustic wavelength, accord-
ing to the Nyquist sampling criterion.87 In sparse sampling, the

Fig. 4 Representative studies using DL methods to overcome limited-detection capabilities.
(a) A DNN with five fully connected layers enhances bandwidth. (b) LV-GAN for addressing
the limited-view problem. (c) A Y-Net generates the PA images by optimizing both raw data
and reconstructed images from the traditional method. (d) A 3D progressive U-Net (3D-pUnet)
to diminish the effects of limited-view artifacts and sparsity arising from cluster view detection.
The images are adapted with permission from Ref. 76, © 2017 SPIE; Ref. 77, © 2020 Wiley-
VCH GmbH; Ref. 78, © 2020 Elsevier GmbH; and Ref. 52, © 2021 Wiley-VCH GmbH. BW,
bandwidth; DNN, deep neural network; DAS, delay-and-sum; cluster, cluster view detection;
full, full view detection.
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actual detector density is lower than this requirement, introduc-
ing streak-shaped artifacts in images.74 Sparse sampling can also
result from a trade-off between image quality and temporal res-
olution, which is sometimes driven by system cost and hardware
limitations.88

To remove artifacts caused by data sparsity, Guan et al.89

added additional dense connectivity into the contracting and
expanding paths of a U-Net. Farnia et al.90 combined a TR
method with a U-Net by inserting it in the first layer. Guo
et al.91 built a network containing a signal-processing method
and an attention-steered network (AS-Net). Lan et al.92 proposed
a knowledge infusion GAN (Ki-GAN) architecture that com-
bines DAS and PA signals for reconstruction from sparsely
sampled data. DiSpirito et al.93 compared various CNN architec-
tures for PAM image recovery from undersampled data of
in vivo mouse brains.94 They chose a fully dense U-Net (FD
U-Net) with a dense block, allowing PAM image reconstruction
using just 2% of the original pixels. Later, they proposed a new
method based on a deep image prior (DIP) method95 to solve this
problem without pretraining or GT data.

3.1.4 Combinational limited-detection problems

Previous studies have primarily tackled individual issues in iso-
lation, neglecting the simultaneous occurrence of multiple lim-
ited-detection challenges in PA systems.74 However, researchers
have recently focused on utilizing a single NN to address two
or three limited-detection problems concurrently, leading to
promising advancements in this area.

For linear array, Godefroy et al.96 incorporated dropout
layers97 into a modified U-Net and further built a Bayesian NN
to improve the PA image quality. Vu et al.98 built a Wasserstein
GAN (WGAN-GP) that combined a U-Net and a deep convolu-
tional GAN (DCGAN).99 The network reduced limited-view and
limited-bandwidth artifacts in PACT images. For a ring-shaped
array, Zhang et al.100 developed a 10-layer CNN, termed a ring-
array DL network (RADL-net), to eliminate limited-view and
under-sampling artifacts in photoacoustic tomography (PAT,
also known as PACT) images. Davoudi et al.101 proposed a
U-Net network to improve the image quality from sparsely
sampled data from a full-ring transducer array. They later up-
dated their U-Net architecture102 to operate on both images and
PA signals. Awasthi et al.103 proposed a U-Net architecture to
achieve superresolution, denoising, and bandwidth enhance-
ments. They replaced the softmax activation function in the final
two layers of the U-Net for segmentation with an exponential
linear unit.104 Schwab et al. proposed a network that combined
the BP with dynamic aperture length (DAL) correction, which
they called DALnet105 to address the limited-view and under-
sampling issues in the 3D imaging PACT system.

One of the notable achievements in applying DL to the 3D-
PACT system was made by Choi et al.52 They introduced a 3D
progressive U-Net (3D-pUnet) as a solution to address limited-
view artifacts and sparsity caused by clustered-sampling
detection, as shown in Fig. 4(d). The design of their network
was inspired by the progressive growth GAN,106 which utilizes
a progressively increasing procedure to optimize a U-Net. In
their 3D-pUnet, subnetworks were trained sequentially using
downsampled data from the original high-resolution volume
data, gradually transferring knowledge obtained from each
progressive step.

The training data set consisted of in vivo experimental data
from rats, and the results demonstrated superior performance

compared with the conventional 3D-U-Net method. Interestingly,
they demonstrated that the 3D-pUnet trained cluster-sampled data
set also works in sparsely sampled data sets. The proposed ap-
proach was also applied to predict dynamic contrast-enhanced
images and functional neuroimaging in rats, achieving increased
imaging speed while preserving high image quality. In addition,
they demonstrated the ability to accurately measure physiologi-
cal phenomena and enhance structural information in untrained
subjects, including tumor-bearing mice and humans.

All the research reviewed in this section is summarized in
Table 3.

3.2 Compensating for Low-Dosage Light Delivery

Pulsed laser sources, such as an optical parametric oscillator
laser system with a Nd:YAG pumped laser, are commonly used
in PACT systems to achieve deep penetration with a high SNR,
but those laser systems are bulky and expensive.2,107 In recent
years, researchers have explored compact and less expensive
alternatives, such as pulsed-laser diodes107 and light-emitting
diodes (LEDs).108 While these alternatives have shown promis-
ing results, their low pulse energy results in a low SNR, requir-
ing frame averaging to increase image quality. Unfortunately,
this method comes at a cost, as it reduces imaging speed.
Furthermore, in dynamic imaging, frame averaging can cause
blurring or ghosting due to the movement of the object being
imaged. To address these problems, DL methods can be applied
to enhance image quality in situations where the light intensity
is low.

One of the representative works for LED-based systems was
achieved by Hariri et al.53 They proposed a multilevel wavelet-
convolutional NN (MWCNN) that could map the low-fluence
PA images to high-fluence PA images from an Nd:YAG laser
system. This approach helps to eliminate the background noise
while preserving the structures of the target, as shown in
Fig. 5(a). Phantom and in vivo studies were conducted to assess
the performance of their model. The MWCNN demonstrated
a significant improvement in contrast-to-noise ratio (CNR)
with up to a 4.3-fold enhancement in the phantom study and
a 1.76-fold enhancement in the in vivo study. These results high-
light the practicality of the proposed method in real-world
scenarios. Singh et al.111 and Anas et al.112 proposed a U-Net
and a deep CNN-based approach to improve the image quality
with a similar system setup. Anas et al. later introduced a recur-
rent neural network (RNN)113 to further improve the system’s
performance.114

To enhance the image quality in a pulsed-laser-diode PA
system, Rajendran et al.109 proposed a hybrid dense U-Net
(HD-UNet) [Fig. 5(b)]. To train the network, they generated
simulated data using the k-Wave toolbox, and evaluated the
model with both single- and multi-US transducer (1-UST and
multi-UST-PLD) PACT systems, using both phantom and
in vivo images. Compared with their previous system, the
HD-UNet improved the imaging speed by approximately
6 times in the 1-UST system and 2 times in the multi-UST-
PLD system. To address the challenges of balancing laser
dosage, imaging speed, and image quality in OR-PAM, Zhao
et al.110 proposed a multitask residual dense network (MT-
RDN) that performs image denoising, superresolution, and
vascular enhancement [Fig. 5(c)]. The network comprises three
subnetworks, each using an independent RDN framework
and assigned a supervised learning task. The first subnetwork
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processes the data of input 1 (i.e., 532 nm data) to obtain output
1, and the second subnetwork processes the data of input 2
(i.e., 560 nm data) to obtain output 2. These outputs are then
combined and processed by subnetwork 3, and the differences
between the outputs and the GT are compared.

To train the network, input images were undersampled at
half-per-pulse laser energy of the GT, while the GT images were
sampled at the full ANSI per-pulse fluence limit. To evaluate the
performance of the proposed method, U-Net and RDN were
used. The MT-RDN method achieved a 16-fold reduction in laser
dosage at 2 times data undersampling and a 32-fold reduction in
dosage at 4 times undersampling compared to the GT images.

All the research reviewed in this section is summarized in
Table 4.

3.3 Improving the Accuracy of Quantitative PAI

Quantitative photoacoustic imaging (qPAI) quantifies molecular
concentrations in biological tissue using multiwavelength PA

images, enabling the estimation of various endogenous and
exogenous contrast agents and physiological parameters, such
as sO2.

61 However, qPAI presents significant challenges due to
the wavelength-dependent nature of light absorption and scatter-
ing, leading to varying levels of light attenuation across different
wavelengths.2,115 Thus, it is hard to accurately determine the flu-
ence distribution, which is nonlinear and complex in biological
tissues. Early research in qPAI assumed constant optical proper-
ties of biological tissue and uniform parameters such as the
scattering coefficient throughout the imaging field.61 However,
recent studies have shown that these assumptions lead to errors,
especially in deep-tissue imaging.116 Model-based iterative
optimization methods have been developed to address this issue
and provide more accurate solutions.117 But these methods are
time-consuming and sensitive to quantification errors.118 A new
approach called eigenspectral multispectral optoacoustic tomog-
raphy (eMSOT) has been proposed to improve qPAI accuracy.116

eMSOT formulates light fluence in tissues as an affine function
of reference base spectra, leading to improved accuracy in qPAI.

Fig. 5 Representative DL approaches compensate for low laser dosage. (a) An MWCNN that
generates high-quality PA images from low-fluence PA images. (b) An HD-UNet that enhances
the image quality in a pulsed-laser diode PACT system. (c) An MT-RDN that performs image
denoising, superresolution, and vascular enhancement. The images are adapted with permission
from Ref. 53, © 2020 Optica; Ref. 109, © 2022 SPIE; and Ref. 110, © 2020 Wiley-VCH GmbH.
MWCNN, multi-level wavelet-convolutional neural network; HD-UNet, hybrid dense U-Net;
MT-RDN, multitask residual dense network.
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However, it requires ad hoc inversion and has limitations in
scale invariance.

Researchers have pursued multiple avenues to extract
fluence distribution information from multiwavelength PA im-
ages using DL architectures. Cai et al.119 introduced ResU-Net,
which adds a residual learning mechanism to the U-Net. Chang
et al.120 developed DR2U-Net, a fine-tuned deep residual recur-
rent U-Net. Luke et al.121 combined two U-Nets to create a new
network called O-Net, which segments blood vessels and es-
timates sO2. A novel DL architecture that contains an encoder,
decoder, and aggregator was introduced by Yang et al.122

termed called EDA-Net. The encoder and decoder paths both
feature a dense block, while the aggregator path incorporates
an aggregation block. Gröhl et al.123 designed a nine-layer
fully connected NN that directly estimates sO2 from PA im-
ages. All showed much high accuracy in estimating sO2 dis-
tributions or other molecular concentrations compared with
linear unmixing.

One of the representative results is from Ref. 124.
Researchers built two separated convolutional encoder–decoder
type networks with skip connections, termed EDS to solve this
problem in 3D conditions [Fig. 6(a)]. One network was trained
to output images of sO2 from 3D-image data and the other net-
work was trained to segment vessels. By leveraging the spatial
information present in the 3D images, the 3D fully convolutional
networks could produce precise sO2 maps. Besides getting more
accurate sO2 results, these networks were able to handle limited-
detection capabilities, such as limited-view artifacts, and showed
promise for producing accurate estimates in vivo.

Researchers have also employed DL methods to recover
the absorption coefficient from reconstructed PA images. Chen
et al.126 proposed a U-Net-based DL network to recover the
optical absorption coefficient and Grohl et al.127 adapted a U-Net
to compute error estimates for optical parameter estimations. A
notable contribution was made by Li et al. in a recent study.54

They addressed the challenge of insufficient data-label pairs
in qPAI by introducing two DNNs, depicted in Fig. 6(b). First,
they introduced a simulation-to-experiment end-to-end data
translation network (SEED-Net) that provides GT images for
experimental images through unsupervised data translation
from a simulation data set. They then designed a dual-path
network based on U-Net (QPAT-Net) to reconstruct images
of the absorption coefficient for deep tissues. The QPAT-Net
outperformed the previous QPAT method128 in simulation,
ex vivo, and in vivo, with more accurate absorption information
and relatively few errors.

Another seminal study was done by Zou et al.125 They devel-
oped the US-enhanced U-Net model (US-Unet), which combines
information from US images and PA images to reconstruct the
optical absorption distribution [Fig. 6(c)]. They implemented
a pretrained ResNet-18 to extract features from US images of
ovarian lesions.

This feature information was incorporated into a U-Net struc-
ture designed to reconstruct the optical absorption coefficient.
The U-Net was trained on simulation data and subsequently
tested on a phantom, blood tubes, and clinical data from 35
patients. The US-Unet outperformed both the U-Net model
without US features and the standard DAS method in phantom
and clinical studies, demonstrating its potential for improving
accuracy in clinical PAI applications.

Compensating for the distribution of light fluence can im-
prove the accuracy of qPAI.129–131 To this end, Madasamy et al.132

compared the compensation performance of different DL
models. The models tested included U-Net,69 FD U-Net,89

Y-Net, FD Y-Net,78 deep residual U-Net (deep ResU-Net),133

and GAN.134 Results showed the robustness of all DL models
to noise and their effectiveness; FD U-Net showed the best
performance. qPAI requires an unmixing process, which can be
achieved through linear or model-based methods.115 Durairaj
et al.135 proposed an unsupervised learning approach using an
initialization network and an unmixing network. Olefir et al.136

introduced DL-eMSOT, combining eMSOTwith a bidirectional
RNN and CNN blocks for accurate sO2 estimation and faster
calculations.

All the research reviewed in this section is summarized in
Table 5.

3.4 Optimizing or Replacing Conventional
Reconstruction Algorithms

In PACT, the acoustic inverse problem involves reconstructing
the PA initial pressure from raw data. Several reconstruction
methods have been developed, including BP,47 FB,48 DAS,44

DMAS,46 TR,49 and model-based methods.51 However, each
method has limitations, and either to enhance existing recon-
struction techniques or to directly reconstruct PA images using
NNs, researchers have turned to DL methods.

Various DL methods have been developed to convert PA
raw data into images. One such method, called Pixel-DL, pro-
posed by Guan et al.,137 uses pixel-wise interpolation followed
by an FD U-Net for limited-view and sparse PAT image
reconstruction [Fig. 7(a)]. The Pixel-DL model was trained
and tested using simulated PA data from synthetic, mouse
brain, lung, and fundus vasculature phantoms. It achieved
comparable or better performance than iterative methods and
consistently outperformed other CNN-based approaches for
correcting artifacts.

To direct reconstruct PA images, Waibel et al.139 introduced
a modified U-Net that includes additional convolutional
layers in each skip connection. Antholzer et al.140 proposed
a direct reconstruction process, based on a U-Net and a simple
CNN, that can resolve limited-view and sparse-sampling
issues. Lan et al.141 proposed a modified U-Net, termed
DU-Net, to reconstruct PA images using multifrequency
US-sensor raw data. A noteworthy study of this topic is
an end-to-end reconstruction network developed by Feng
et al.,138 termed Res-U-Net [Fig. 7(b)]. They integrated residual
blocks into the contracting and symmetrically expanding
path of U-Net and added a skip connection between the
input of raw data and the output of images. The training,
validation, and test data sets were synthesized using the k-
Wave toolbox. In digital phantom experiments, the Res-UNet
showed performance superior to other reconstruction methods
[Fig. 7(b)].

Another representative work was done by Tong et al.55

They proposed a novel two-step reconstruction process with
a feature projection network (FPnet) and a U-Net [Fig. 7(c)].
The FPnet converts PA signals to images and contains several
convolutional layers to extract features. There is one max pool-
ing layer for downsampling and one full connection layer for
domain transformation. The U-Net performs postprocessing to
improve image quality. The resulting network, trained using
numerical simulations and in vivo experimental data, outper-
formed other approaches to handle limited-view and sparsely
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sampled experimental data, exhibiting superior performance
on in vivo experiments [Fig. 7(c)].

In addition, Yang et al.142 introduced recurrent inference
machines (RIM), an iterative PAT reconstruction method using

convolution layers. Kim et al.143 employed upgUNET, a U-Net
model with 3D transformed arrays for image reconstruction.
Hauptmann et al.144 proposed DGD, a deep gradient descent
algorithm, outperforming U-Net and other model-based

Fig. 6 Representative studies to improve the accuracy of quantitative PAI by DL.
(a) Convolutional encoder–decoder type network with skip connections (EDS) to produce accurate
estimates of sO2 in a 3D data set. (b) Dual-path network based on U-Net (QPAT-Net) to
reconstruct images of the absorption coefficient for deep tissues. (c) US-enhanced U-Net
model (US-UNet) to reconstruct the optical absorption distribution. The images are adapted
with permission from Ref. 124, © 2020 SPIE; Ref. 54, © 2022 Optica; and Ref. 125,
© 2022 Elsevier GmbH.
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methods. They also introduced fast-forward PAT (FF-PAT),
a modified version of DGD, which addressed artifacts using
a small multiscale network.145

All the research reviewed in this section is summarized in
Table 6.

3.5 Addressing Tissue Heterogeneity

Biological tissues are acoustically nonuniform, making it crucial
to use a locally appropriate speed of sound (SoS) value for ac-
curate PA reconstruction. SoS mismatch or a discontinuity in
hard textured tissue can create acoustic reflection and imaging
artifacts74 that make it hard to detect the source of the PA signal,
which is especially troublesome for interventional applications.
DL methods have been used to detect point sources, remove
reflections, and mitigate the difficulties presented by acoustic
heterogeneity.

Highly echogenic structures can cause a reflection of a PA
wave to appear to be a true signal,146 which makes it hard to
find point targets or real sources in PAI. Reiter et al.147 trained a
CNN to identify and remove reflection noise, locate point targets,

and calculate absorber sizes in PAI. Later, Allman et al.148 found
Fast-RCNN149 to be more effective than VGG1684 for source
detection and artifact elimination. Shan et al.150 incorporated
a DNN into an iterative algorithm to correct reflection artifacts,
achieving superior results compared with other methods.151,152

Jeon et al.56 proposed a generalized solution to mitigate
SoS aberration in heterogeneous tissue by DL. They proposed
a hybrid DNN model, named SegU-net, based on U-Net and
SegNet153 [Fig. 8(a)]. The architecture is similar to SegNet, but
has an additional connection between the encoder and decoder
through concatenation layers, like U-Net. The training data were
generated using the k-Wave toolbox with different SoS values.
They tested the model with phantoms with homogeneous media
and in heterogeneous media. The proposed method showed
better results than the multistencil fast marching155 method and
automatic SoS selection.156 It not only resolved the SoS aberra-
tion but also removed streak artifacts in images of healthy
human limbs and melanoma.

All the research reviewed in this section is summarized in
Table 7.

Fig. 7 Representative studies to optimize conventional reconstruction algorithms or replace
them with DL. (a) Pixel-wise interpolation approach followed by an FD-UNet for limited-view
and sparse PAT image reconstruction. (b) End-to-end U-Net with residual blocks to reconstruct
PA images. (c) Two-step PA image reconstruction process with FPnet and U-Net. The images
are adapted with permission from Ref. 137, © 2020 Nature Publishing Group; Ref. 138, © 2020
Optica; and Ref. 55, © 2020 Elsevier GmbH.
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3.6 Improving the Accuracy of Image Classification and
Segmentation

As PAI gains increasing attention in clinical studies, more ac-
curate classification and segmentation methods are necessary to
improve the interpretation of PA images. Image segmentation

extracts the outline of objects within an image and identifies the
distinct parts of the image that correspond to these objects.158,159

Image classification predicts a label for an image, identifying
its content. In this section, we focus on segmentation and clas-
sification techniques.158

Fig. 8 Representative DL studies to correct the SoS and improve the accuracy of image classi-
fication and segmentation. (a) Hybrid DNN model including U-Net and Segnet to mitigate SOS
aberration in heterogeneous tissue. (b) Sparse-UNet (S-UNet) for automatic vascular segmenta-
tion in MSOT images. The images are adapted with permission from Ref. 153, CC-BY; Ref. 154,
© Elsevier GmbH.

Table 7 Summary of methods for addressing tissue heterogeneity.

Author
Neural network
architecture

Basic
network

Training data set
(if specified,

validation is excluded)

Test data set Specified task
Representative

evaluation resultsSource
Data

amount

Reiter
et al.147

CNN CNN k-Wave simulation 19,296 k-Wave simulation/
in vitro vessel-
mimicking target

phantom

Identify point source —

Allman
et al.148

CNN consisting
of VGG16/Fast

R-CNN

CNN k-Wave simulation 15,993 k-Wave simulation/
in vivo data

Identify and remove
reflection artifacts

Precision, recall,
and AUC > 0.96

Allman
et al.157

CNN consisting
of VGG16/fast

R-CNN

CNN k-Wave simulation 15,993 In vitro phantom Correct reflection
artifact

Accuracy (phantom)
74.36%

Shan
et al.150

U-Net U-Net Numerical
simulation from
3 cadaver CT

64,000 Numerical simulation
from 1 cadaver CT

Correct reflection
artifacts

PSNR (versus TR)
9 → 29

SSIM (versus TR)
0.2 → 0.9

Jeon
et al.56

SegU-net U-Net k-Wave simulation
of in silico phantom

270 k-Wave simulation of
in silico phantom/
in vivo human

forearm and foot

Reduce speed-of-
sound aberrations

In silico phantom

SSIM (versus pre-
corrected) + 0.24
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Segmentation and classification are widely used in image
postprocessing, and transfer learning has been utilized to take
advantage of pretrained DNNs. Zhang et al.160 used DL models
AlexNet161 and GoogLeNet162 for PA image classification,
outperforming support vector machine (SVM). Jnawali et al.163

employed transfer learning with Inception-ResNet-V2164 for
thyroid cancer detection and introduced a deep 3D CNN for
cancer detection in multispectral photoacoustic data sets.165

Moustakidis et al.166 developed SkinSeg for identifying
skin layers in raster-scan optoacoustic mesoscopy (RSOM) im-
ages, evaluating decision trees,167 SVM,168 and DL algorithms.
Nitkunanantharajah et al.169 achieved good classification perfor-
mance with ResNet18164 on RSOM nail fold images.

PACT has demonstrated its great potential for human vascu-
lar imaging in several clinical studies.15 However, segmentation
of the vascular structures, particularly the vascular lumen, is still
accomplished through manual delineation by expert physicians,
which is not only time-consuming but also subjective. To ad-
dress this issue, Chlis et al.154 proposed a sparse UNet (S-UNet)
for automatic vascular segmentation on MSOT images. GT is
obtained from binary images extracted from MSOT images,
based on consensus between two clinical experts [Fig. 8(b)].
The MSOT raw data from six healthy humans’ vasculature were
acquired using a handheld MSOT system, and they were split
into training, validation, and test sets. The S-Unet showed
performance similar to other U-Net methods, but with smaller
parameter sizes and the ability to select wavelengths, indicating
its potential for clinical application.170

In addition, Lafci et al.171 proposed a U-Net architecture to
accurately segment animal boundaries in hybrid PA and US
(PAUS) images. Boink et al.172 proposed a learned primal-dual
(L-PD) algorithm based on a CNN to solve the reconstruction
and segmentation problem simultaneously. Ly et al.57 introduced
a modified U-Net DL model for automatic skin and vessel seg-
mentation in in vivo PAI. The U-Net architecture showed the
best performance.

All the research reviewed in this section is summarized in
Table 8.

3.7 Overcoming Other Specified Issues

In addition to the general challenges to PAI mentioned above,
researchers encounter several more specific problems with their
imaging systems. Collectively, these specific issues constitute
a seventh challenge, and among them we have identified six
representative categories: motion artifacts, limited spatial reso-
lution, electrical noise and interference, image misalignment,
slow accelerating superresolution imaging, and achieving digital
histologic staining.

Motion artifacts caused by breathing or heartbeats can
significantly reduce image quality in PAM and PA endoscopy
(PAE or intravascular PA, IVPA). To address this issue, re-
searchers have presented various breathing artifact removal
methods,173,174 and DL methods have recently been proposed
as a potential solution. Chen et al.175 introduced a CNN approach
with three convolutional layers to address motion artifacts and
pixel dislocation in in vivo rat brain images. Zheng et al.176 pro-
posed MAC-Net, a network based on VGG16 GAN134 and spa-
tial transformer networks (STN),177 to suppress motion artifacts
in IVPA. Both methods demonstrated successful improvement
in image quality.

OR-PAM can penetrate ∼1 mm deep in biological tissue,
limited by light scattering. AR-PAM, which does not use

focused light, can penetrate up to several centimeters, but it
has a lower spatial resolution than OR-PAM. Researchers have
applied DL to enhance the spatial resolution of AR-PAM to
match that of OR-PAM. Cheng et al.178 proposed a GAN-based
framework called Wasserstein GAN179 [Fig. 9(a)]. An integrated
OR- and AR-PAM system was built for data acquisition and net-
work training. The generator network takes an AR-PAM image as
input and generates a high-resolution image, while the discrimi-
nator network evaluates the similarity between the generator’s
output and the GT image obtained from OR-PAM. Using in vivo
mouse ear vascular images, the proposed method was first com-
pared with the blind deconvolution method, and it improved the
spatial resolution and produced superior microvasculature im-
ages. Furthermore, the proposed method was shown to be appli-
cable to other types of tissues (e.g., brain vessels) and deep tissues
(e.g., a chicken breast tissue slice of 1700 μm thickness) that are
not easily accessible by OR-PAM. A similar study was imple-
mented by Zhang et al.,181 who combined a physical model and
a learning-based algorithm, termed MultiResU-Net.

DL methods have been applied to address noise and interfer-
ence issues in PA imaging. Dehner et al.182 developed a discrimi-
native DNN using a U-Net architecture to separate electrical
noise from PA signals, improving PA image contrast and spec-
tral unmixing performance. He et al.183 proposed an attention-
enhanced GAN with a modified U-Net generator to remove
noise from PAM images, prioritizing fine-feature restoration.
Gulenko et al.184 evaluated different CNN architectures and
found that U-Net demonstrated higher efficiency and accuracy in
removing electromagnetic interference noise from PAE systems.

To address image misalignment in PAM, Kim et al.185 utilized
a U-Net framework. Their method effectively addressed non-
linear mismatched cross-sectional B-scan PA images during
bidirectional raster scanning, resulting in a significant improve-
ment in imaging speed, doubling the speed compared to conven-
tional approaches.

To improve the temporal resolution of superresolution locali-
zation imaging,186,187 hundreds of thousands of overlapping
images are traditionally required. However, this process can
be time-consuming. To address this problem, Kim et al.180 pro-
posed a GAN with U-Net based on pix2pix188 to reconstruct
superresolution images from raw image frames [Fig. 9(b)].
The proposed network can be applied to both 3D label-free
localization OR-PAM and 2D labeled localization PACT. The
authors trained and validated the network with in vivo data from
3D OR-PAM and 2D PACT images. The proposed method
reduced the required number of raw frames by 10-fold for
OR-PAM and 12-fold for PACT, resulting in a significant im-
provement in temporal resolution.

Ultraviolet PAM (UV-PAM) takes advantage of the optical
absorption contrast of UV light to highlight cell nuclei, gener-
ating PA contrast images similar to hematoxylin and eosin
(H&E) labeling.189 DL techniques can be used to digitally gen-
erate histological stains using trained NNs based on UV-PAM
images, providing label-free alternatives to standard chemical
staining methods.190

Boktor et al.191 utilized a DL approach based on GANs to
digitally stain total-absorption PA remote sensing (TA-PARS)
images, achieving high agreement with the gold standard of
histological staining. Cao et al.192 employed a cycle-consistent
adversarial network (CycleGAN)193 model to virtually stain
UV-PAM images, producing pseudo-color PAM images that
matched the details of corresponding H&E histology images.
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In a recent study, Kang et al.58 combined UV-PAM with DL
to generate rapid and label-free histological images [Fig. 9(c)].
Their proposed method, termed deep-PAM, can generate
virtually stained histological images for both thin sections
and thick fresh tissue specimens. By utilizing an unpaired
image-to-image translation network, a CycleGAN, they were
able to process GM-UV-PAM images and instantly produce
H&E-equivalent images of unprocessed tissues. This ground-
breaking approach has significant implications for the field of
histology and may offer an alternative to traditional staining
methods.

All the research reviewed in this section is summarized in
Table 9.

4 Discussion and Conclusion
PAI is a rapidly growing biomedical imaging modality that
utilizes endogenous chromophores to noninvasively provide
biometric information, such as vascular structure and sO2.
However, as shown in Fig. 1, PAI still faces seven significant
challenges: (1) overcoming limited detection capabilities,
(2) compensating for low-dosage light delivery, (3) improving
the accuracy of quantitative PA imaging, (4) optimizing or
replacing conventional reconstruction methods, (5) addressing
tissue heterogeneity, (6) improving the accuracy of image clas-
sification and segmentation, and (7) overcoming other specified
issues. In this review paper, we have summarized DL studies

Fig. 9 Representative studies using DL to solve specific issues. (a) GAN-based framework
(Wasserstein GAN) to enhance the spatial resolution of AR-PAM. (b) GAN with U-Net to recon-
struct superresolution images from raw image frames. (c) Deep-PAM generates virtually stained
histological images for both thin sections and thick fresh tissue specimens. The images are
adapted with permission from Ref. 178, © 2021 Elsevier GmbH; Ref. 180, © 2022 Springer
Nature; and Ref. 58, © 2021 Elsevier GmbH. BF-H&E, brightfield hematoxylin and eosin staining;
DNN, deep neural network.
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over the past five years that have addressed these general chal-
lenges in PAI. Further, we have discussed how DL can be used
to solve several more specific problems in PAI.

CNN, U-Net, and GAN have been the most representative net-
works used in PAI-related research. While some studies use basic
architectures to achieve their goals, others modify or develop new
architectures to solve particular problems in PAI. These networks
can be used in various ways, such as postprocessing reconstructed
images with different types of noise or directly reconstructing
PA images from the time domain in the image domain.

Furthermore, recent research has aimed to extract more
accurate quantitative information by using multiple networks,
rather than solely focusing on enhancing image quality with
one network. This approach can provide more comprehensive
and detailed information, improving the overall performance
of PAI. While SSIM is commonly used as the loss function,
other metrics, such as PSNR and the Pearson correlation, may
be added to improve information extraction and convergence
speed. The continued exploration and refinement of these net-
work architectures and loss functions will likely contribute to
continued advancements in PAI.

Several obstacles remain. The success of DL approaches in
PAI is highly dependent on the availability of high-quality data
sets, and there is a scarcity of experimental training data. DL
approaches in PAI also lack a standardized PA-image format
and publicly available data that are accessible to all groups.
Consequently, researchers rely on data generated from experi-
ments or simulations, and even publishing PA data is difficult
because there is no standard format. The k-Wave79 toolbox is the
most generally used to generate the PA initial pressure, along
with other light transport simulators, such as mcxlab,194 to gen-
erate the light distribution. However, creating reliable simula-
tion data requires GT data from the real world. Commonly,
x-ray CT or MRI images of blood vessels and organs are used
for PA simulation. Fortunately, there are public data sets of
x-ray CTandMRI images, and many groups have used these open
data sets to generate PA GTs. However, the varying information
obtained by different imaging modalities may not align with
PAI. Recently, the International Photoacoustic Standardization
Consortium (IPASC)195 has been working to overcome this chal-
lenge by bringing together researchers, device developers, and
government regulators to achieve standardization of PAI through
community-led consensus building. With the efforts and involve-
ment of IPASC, the generalization ability of DL, which is the
fundamental problem in medical imaging field, will increase.

While DL has shown improved image qualities in PAI, there
are still concerns regarding its applications in biomedical im-
ages. Therefore, the efforts of researchers who aim to advance
PAI without applying DL are still valuable. For examples, new
restoration algorithms196 are being developed to enhance the im-
age quality affected by limited-detection capabilities. The devel-
opment of ultrawide detection bandwidth transducers197 aims to
mitigate the limited bandwidth of traditional US transducers,
thereby improving the overall sensitivity and resolution of PAI.
Furthermore, specially designed PACT systems with fast-sweep
laser scanning techniques offer automatic fluence compensation
and motion correction.129 Combining PACT with transmission-
mode US-computed tomography enables the mapping of the
distribution of SoS, further enhancing PACT image quality.198

Moreover, a wide range of exogenous contrast agents has been
developed to improve the SNR of PAI or to overcome the res-
olution limitations.4

Despite the challenges faced in applying DL to PAI, there is
no doubt that DL will have a great impact on the biomedical
imaging field, well beyond PAI.199–207 PAI’s fundamental prob-
lems, caused by hardware limitations and the lack of tissue in-
formation, are ripe for solution by the information extraction,
convergence, and high-speed processing enabled by DL. The
result will be new opportunities for PAI to take off as a major
imaging modality, opening an exciting era of DL-based PAI.
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