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Abstract. The use of orbital angular momentum (OAM) as an independent dimension for information
encryption has garnered considerable attention. However, the multiplexing capacity of OAM is limited, and
there is a need for additional dimensions to enhance storage capabilities. We propose and implement orbital
angular momentum lattice (OAML) multiplexed holography. The vortex lattice (VL) beam comprises three
adjustable parameters: the rotation angle of the VL, the angle between the wave normal and the z axis,
which determines the VL’s dimensions, and the topological charge. Both the rotation angle and the VL’s
dimensions serve as supplementary encrypted dimensions, contributing azimuthally and radially, respectively.
We investigate the mode selectivity of OAML and focus on the aforementioned parameters. Through
experimental validation, we demonstrate the practical feasibility of OAML multiplexed holography across
multiple dimensions. This groundbreaking development reveals new possibilities for the advancement of
practical information encryption systems.
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1 Introduction
Optical holography technology utilizes computer-generated
holograms to reconstruct the beam field, achieving remarkable
success across various applications, such as data storage, 3D
printing, artificial intelligence, and optical tweezers.1–4 How-
ever, traditional holography is limited by polarization, wave-
length, and incident angle as independent multiplexing channel
parameters.5–11 This approach is constrained by limited spatial
channel availability and significant cross talk. To overcome
these limitations, the use of optical orbital angular momentum
(OAM) as an additional information bearer in holography has
gained increasing attention.12–15

OAM collection is distinguished by its angular vortex
phases, providing an endless array of unique mode channels

for multiplexing.16–18 Recent developments have showcased
practical implementations of OAM multiplexed holography,
establishing it as a standalone information channel.12–14 This
technique retains the OAM property and enables selective image
reconstruction based on the encoded OAM. Various forms of
OAM holography have emerged, such as polarization-encrypted
OAM holography, ellipticity-encrypted OAM holography,
ultradense perfect OAM multiplexed holography, partial OAM
holography, modulated OAM holography, multiple-image and
multiple-dimensional encrypted OAM multiplexed holography,
and holographic strategy for OAM that incorporates complex
features by employing deep-learning algorithms.19–27

Despite these advancements, the capacity for encoded infor-
mation in OAM multiplexed holography remains limited.
Moreover, conventional OAM multiplexed holography lacks
an additional degree of freedom to enhance both information
security and capacity. A newly proposed approach, MHC-OAM
multiplexed holography, introduces new degrees of freedom by
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multiplexing different angular momentum modes of light beams,
enabling the simultaneous transmission of multiple information
channels.28 Overall, the use of OAM in holography has the
potential to revolutionize information transmission and storage,
and ongoing research seeks to further optimize this technology.

In this study, we introduce and demonstrate the effectiveness
of orbital angular momentum lattice (OAML) multiplexed
holography, an innovative technique that utilizes a vortex lattice
(VL) beam that is independently adjustable within three crucial
parameters: the rotation angle of the VL, the angle between the
wave normal and the z axis (which determines the VL’s size),
and the topological charge. Notably, the rotation angle and
the size of the VL introduce additional encrypted dimensions,
specifically in the azimuthal and radial directions. We conduct
an extensive investigation into the selectivity of OAML modes
based on these parameters, enabling us to achieve multidimen-
sional multiplexed holography. Our experimental results affirm
the practicality of OAML multiplexed holography across various
dimensions, holding significant promise in the field of informa-
tion encryption. This methodology unlocks new possibilities
for robust optical encryption and a wide range of classical or
quantum information applications.

2 Materials and Methods
The proposed VL beam significantly enhances the encryption
capacity of OAM holography. Figure 1 shows a comparison be-
tween OAML holography and conventional OAM holography.
In the case of the conventional OAM beam [top of Fig. 1(a)],
an OAM-preserved hologram is designed to maintain the OAM

property of incident OAM beams in each pixel of reconstructed
holographic images, allowing OAM to serve as an independent
information carrier. Conversely, for the VL beam, the rotation
angle of the VL, the angle between the wave normal and the
z axis, and the topological charges are configured as indepen-
dent information carriers. In the upper part of Fig. 1(b), a helical
phase plate is overlaid with an OAM-preserved hologram to
create an OAM-selective hologram for the conventional OAM
beam. This hologram contains spatial-frequency components
that carry a helical wavefront. Due to OAM conservation, only
a specific incident OAM beam with an inverse helical mode
index can be transformed into a Gaussian mode, selectively re-
constructing a holographic image encoded in an OAM image
channel. Similarly, for the VL beam, when a VL phase is added
to an OAM-preserved hologram, an OAM-selective hologram is
achieved. It is worth noting that for the OAML-preserved holo-
gram, different hologram images correspond to different VLs
with varying rotation angles and sizes in the Fourier plane.
The different VLs with different rotation angles correspond
to different points on the same circle, while the different VLs
with different sizes correspond to various points on concentric
rings with different radii. As these different points on the con-
centric ring or the single circle are orthogonal, the aforemen-
tioned VLs are also orthogonal (see Supplementary Note 1 in
the Supplementary Material). This hologram likewise contains
spatial-frequency components. Due to the conservation of
OAM, only a specific incident VL beam, with its topological
charge reversed compared to the topological charge at the back
focal plane of the lens for the OAM-selective hologram, can be
transformed into a Gaussian mode in the Fourier transform
plane.

Fig. 1 Schematic diagrams of two types of holograms: (a) an OAM-preserved hologram and (b) an
OAM-selective hologram. These holograms are designed to transfer the OAM property from an
incident OAM beam to a holographic image and to reconstruct specific OAM channels, respec-
tively. Top: the conventional OAM beam. Bottom: the proposed VL beam. fa1g� and fβ1g� are
the equivalent values of α2 and β1 for the conjugate phase of the encoded phase, respectively.
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The VL phase φ generating the VL beam can be calculated as

φ ¼ arg
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where k ¼ 2π∕λ, λ is the wavelength set as 532 nm in this paper,
ðx; yÞ represents the rectangular coordinate, and α, β, l, and θ
present the rotation angle of the VL, the angle between the wave
normal and the z axis, topological charge, and azimuth angle,
respectively. As the chosen example is the VL, which is the
quadruple rotational symmetry, α ranges from 0 to π∕2. β is
too large to make the four holographic images overlap, which
identifies the encrypted image and cannot achieve the image en-
cryption. β should have a small value and determines the size of
the VL. To simplify matters, this paper chooses the square VL as
an example, even though the VL can have an arbitrary shape.

The spatial-frequency distribution of the VL beams based on
the Fourier integral theorem is expressed as

u ¼
Z

2π

0

Z
∞

0

circðr∕RÞ expðiφÞ exp½−i2πrρ cosðθ

− ϕÞ�rdr dθ; (2)

where circðr∕RÞ is the circle function used to describe the cir-
cular aperture stop, r and R represent the radial coordinate and
the normalization factor of the radial coordinate, respectively,
and ðρ;ϕÞ indicate the polar coordinates in the image plane.

In computer-generated holography, a Fourier pair is established
between the electric field in the image plane and the holographic
plane. As a result, the electric field of the reconstructed image is

EOAM ¼ I½Eh · EOAM� ¼ I½Eh� � I½EOAM�; (3)

where Eh and EOAM are the complex amplitudes of the hologram
and the VL beam, respectively. The operators I and * are the
Fourier transform and convolution, respectively. If the sampling
array of the target image is correlated with the spatial frequency
of the VL-OAM beam, the OAM properties will be preserved in
the reconstructed image.

The design principle of OAML holography is visually
depicted in Fig. 2(a). Employing the Gerchberg–Saxton (GS)
algorithm, we obtain an OAM-preserved hologram, as demon-
strated in the middle section of Fig. 2(a). To achieve clear re-
constructed images, we set “d” in the 2D Dirac comb to 184 μm
for this study. It is important to note that the VL beam is pre-
served in each pixel of the reconstructed image. In the right

Fig. 2 OAML mode selectivity. (a) Design concept for an OAM-preserved hologram and an OAM-
selective hologram. (b) Mode selectivity of the constant l . (c) Mode selectivity of α. (d) Mode
selectivity of β.
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portion of Fig. 2(a), we superimpose the phase function φ of
a VL beam with (l ¼ 1, α ¼ 0.1π∕2, β ¼ 0.004) onto the
OAM-preserved hologram, resulting in the creation of an OAM-
selective hologram. Due to the conservation of OAM, only
a specific incident VL beam with (l ¼ −1, fαg� ¼ −0.1π∕2,
fβg� ¼ −0.004) can produce Gaussian spots with a stronger
intensity distribution in the desired holographic image.
Consequently, we obtain the multiplexed hologram. The mode
selectivity of VL beams in image reconstruction is shown in
Figs. 2(b)–2(d) and takes into account different values of “l”,
“α,” and “β.” The encoded phase parameters of the hologram
remain fixed at (l ¼ 1, α ¼ 0.1π∕2, β ¼ 0.004). First, we
demonstrate the mode selectivity of VL beams while keeping
“α” and “β” constant, as presented in Fig. 2(b). When the
hologram is illuminated by the decoded phase mode (l ¼ −1,
fαg� ¼ −0.1π∕2, fβg� ¼ −0.004), a Gaussian spot with
stronger intensity is obtained. However, when the incident-
decoded VL beam has values of (l ¼ 5, −5, fαg� ¼
−0.1π∕2, fβg� ¼ −0.004), compared to Gaussian spots under
the above correct incident-decoded VL beam, the reconstructed
light field exhibits lower intensity. Figure 2(c) illustrates the
impact of “α” on the mode selectivity. Similarly, when the holo-
gram is illuminated by the decoded phase mode (l ¼ −1,
fαg� ¼ −0.1π∕2, fβg� ¼ −0.004), the desired Gaussian spot
is obtained. On the other hand, the peak intensity of the
mode with values of (l ¼ −1, fαg� ¼ −0.01π∕2, 0.5π∕2,
fβg� ¼ −0.004) is lower than that of the mode with (l ¼ −1,
α� ¼ −0.1π∕2, fβg� ¼ −0.004). Figure 2(d) shows the effect of
“β” on the mode selectivity. Once again, when the hologram is
illuminated by the decoded phase mode (l ¼ −1, fαg� ¼
−0.1π∕2, fβg� ¼ −0.004), the desired Gaussian spot is
obtained. Conversely, the peak intensity of the mode with
values of (l ¼ −1, fαg� ¼ −0.1π∕2, fβg� ¼ −0.001, 0.007) is
lower than that of the mode with (l ¼ −1, fαg� ¼ −0.1π∕2,
fβg� ¼ −0.004). In Figs. 2(b)–2(d), the phase depicted is the
combined result of the fixed encoded phase and the phase of
the incident-decoded VL beam. Therefore, when the phase of
the incident-decoded VL beam aligns perfectly with the correct
decoded phase of the fixed encoded phase, the phase in Fig. 2
becomes zero. In other words, the entire superimposed phase
appears as totally black.

3 Results and Discussion
The experimental setup for OAML holography is presented in
Fig. 3. We employ a laser with a wavelength of 532 nm as the
light source. To ensure optimal beam characteristics, we expand
and collimate the laser beam using a spatial filter comprising an
objective lens, a pinhole, and an additional lens to adjust the
incident beam size, aligning it with the phase-only spatial light
modulator (SLM, UPOLabs-HDSLM80R Pro, 1920 pixels×
1200 pixels, pixel pitch of 8 μm). Since the SLM is sensitive
solely to the horizontally polarized component of the incident
beam, we insert a polarizer between the spatial filter and the
SLM, generating a horizontally polarized beam. The modulated
beam, reflected by the beam splitter, is directed through a
CMOS camera (FLIR, GS3-U3-123S6C-C, 4096 pixels×
3000 pixels, pixel pitch of 3.45 μm) responsible for capturing
the reconstructed holographic image. In this specific experi-
ment, the system is simplified, as only one SLM is utilized.
Rather than directly illuminating the hologram pattern with a
VL beam, we superimpose the decoded VL phase distribution
onto the hologram. The hologram itself is then illuminated by

a planar beam, as shown in Fig. 3(a). During the decryption
process, the hologram can be represented as the superposition
of the decoded VL phase and the OAML hologram. Therefore,
the mathematical representation of the phase-only hologram can
be described as

P ¼ arg

�XN
i¼1

expðiΦiÞ expðiψ i−deÞ
�
; (4)

where Φi represents the phase information of each image chan-
nel, ψ i−de represents the decoded VL phase distribution, and
N represents the number of multiplexing channels. The design
principle of the hologram loaded into the SLM is shown in
Fig. 3(b). We’ve thoroughly analyzed the impact of adding
another SLM, factoring in misalignment (see Supplementary
Note 2 in the Supplementary Material).

Figure 4 provides a visual representation of the schematic
diagram that elucidates the concept of l-encrypted OAML mul-
tiplexed holography. The experimental setup involves encoding
four distinct target images labeled as Arabic numerals “1,” “2,”
“3,” and “4” into separate holograms while preserving crucial
OAM information. This encoding process utilizes the GS algo-
rithm to achieve optimal results. To accomplish this, we employ
four VL phase modes, each characterized by specific parame-
ters, denoted as (l ¼ 1, 11, 21, 31, α ¼ 0.2π∕2, 0.2π∕2,
0.2π∕2, 0.2π∕2, β ¼ 0.001, 0.001, 0.001, 0.001). These param-
eters enable the creation of corresponding OAM-selective
holograms. These individual holograms are then combined to
produce a unified OAM multiplexed hologram, as shown in
Fig. 4(a). To assess the practical feasibility of l-multiplexed
holography, we conducted both numerical simulations and
physical experiments, as meticulously presented in Figs. 4(b)–
4(e). During the experimental phase, the OAML multiplexed
hologram associated with a specific “l” key was subjected to
various incident VL beams. These beams were characterized
by parameters such as (l ¼ −1, fαg� ¼ −0.2π∕2, fβg� ¼
−0.001), (l ¼ −11, fαg� ¼ −0.2π∕2, fβg� ¼ −0.001),
(l ¼ −21, fαg� ¼ −0.2π∕2, fβg� ¼ −0.001), and (l ¼ −31,

Fig. 3 (a) Schematic diagram of the experimental setup of OAML
hologram. (b) The hologram loaded into the SLM consists of two
components: the decoded phase and the OAM hologram.
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fαg� ¼ −0.2π∕2, fβg� ¼ −0.001). Intriguingly, this arrange-
ment resulted in the reconstruction of four distinct images:
“1,” “2,” “3,” and “4” at the lens’s focal plane for each corre-
sponding case. Consequently, these results conclusively demon-
strate the effectiveness of utilizing specific “l” values associated
with incident VL beams to achieve the encryption of four discrete
images from a single multiplexed hologram. Figures 4(f)–4(i)
illustrate the capture intensity distributions of the aforementioned
VL beams, respectively. Upon illumination of the multiplexed
OAML-preserved hologram by a planar beam, four images mani-
fest simultaneously, appearing indistinguishable from each other,
as shown in Fig. 4(j). Let us consider the case of OAM holog-
raphy, which encodes singular OAM information to produce
a single image. In this scenario, we employ a blazed grating to
modulate the phase of the holography, allowing us to selectively
extract the first-order diffraction through the SLM. Within the
experimental framework, the efficiency of both generating and
decoding the holography is quantified by the ratio between the
energy content of the reconstructed image and that of the back-
ground. While the measured efficiency currently stands at
12.95%, it is possible to optimize the experimental setup further
to bring it closer to its numerical simulation value of 71.84%.

Figure 5 provides a schematic diagram of α-encrypted
OAML multiplexed holography. In this setup, four target im-
ages, represented by Arabic numerals “5,” “6,” “7,” and “8”
are individually encoded into four holograms while preserving
the OAM information. Specifically, four VL phase modes with
parameters (l ¼ 1, 1, 1, 1, α ¼ 0.1π∕2, 0.2π∕2, 0.3π∕2, 0.4π∕2,
β ¼ 0.001, 0.001, 0.001, 0.001) are used to generate the
corresponding OAM-selective holograms. These four OAM-
selective holograms can be superimposed to form a single OAM
multiplexed hologram, as shown in Fig. 5(a). To evaluate the
feasibility of α-multiplexed holography, we conducted numerical
simulations and presented the experimental results in Figs. 5(b)–
5(e). In these experiments, the OAML multiplexed hologram
with the specific α key is illuminated by different incident VL
beams. When the OAML multiplexed hologram with the α key
is illuminated by different incident VL beams with (l ¼ −1,
fαg� ¼ −0.1π∕2, fβg� ¼ −0.001), (l ¼ −1, fαg� ¼ −0.2π∕2,
fβg� ¼ −0.001), (l ¼ −1, fαg� ¼ −0.3π∕2, fβg� ¼ −0.001),
and (l ¼ −1, fαg� ¼ −0.4π∕2, fβg� ¼ −0.001), four distinct
images “5,” “6,” “7,” and “8” are reconstructed at the focal plane
of the lens, respectively. These results demonstrate that by utiliz-
ing specific α values associated with the incident VL beams, four

Fig. 4 Schematic diagram of OAML multiplexed holography
designed with key l . (a) Design process. (b)–(e) Experimental
reconstruction results based on the l -dependence of the incident
VL beams with (l ¼ −1, −11, −21, −31, fαg� ¼ −0.2π∕2, −0.2π∕2,
−0.2π∕2, −0.2π∕2, fβg� ¼ −0.001, −0.001, −0.001, −0.001), re-
spectively. (f)–(i) Capture intensity distributions of the above VL
beams, respectively. (j) Experimental reconstruction results of
the OAML-preserved holography.

Fig. 5 Schematic diagram of OAML multiplexed holography
designed with key α. (a) Design process. (b)–(e) Experimental
reconstruction results based on the α-dependence of the incident
VL beams with (l ¼ −1, −1, −1, −1, fαg� ¼ −0.1π∕2, −0.2π∕2,
−0.3π∕2, −0.4π∕2, fβg� ¼ −0.001, −0.001, −0.001, −0.001),
respectively. (f)–(i) Capture intensity distributions of the above
VL beams, respectively. (j) Experimental reconstruction results
of the OAML-preserved holography.
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images can be effectively encrypted from a single multiplexed
hologram. Figures 5(f)–5(i) illustrate the capture intensity distri-
butions of the aforementioned VL beams, respectively. Upon
illumination of the multiplexed OAML-preserved hologram by
a planar beam, four images manifest simultaneously, appearing
indistinguishable from each other, as depicted in Fig. 5(j).

Figure 6 presents a schematic diagram of β-encrypted OAML
multiplexed holography. In this configuration, four target im-
ages represented by Arabic numerals “9,” “10,” “11,” and “12”
are individually encoded into four holograms while preserving
the OAM information. Specifically, four VL phase modes with
parameters (l ¼ 1, 1, 1, 1, α ¼ 0.1π∕2, 0.1π∕2, 0.1π∕2, 0.1π∕2,
β ¼ 0.001, 0.002, 0.003, and 0.004) are utilized to generate the
corresponding OAM-selective holograms. These four OAM-
selective holograms can be superimposed to form a single
OAM multiplexed hologram, as depicted in Fig. 6(a). To evalu-
ate the feasibility of β-multiplexed holography, we conducted
numerical simulations and presented the experimental results
in Figs. 6(b)–6(e). In these experiments, the OAML multiplexed
hologram with the specific β key is illuminated by different in-
cident VL beams. When the OAML multiplexed hologram with

the β key is illuminated by the different incident VL beams
with (l ¼ −1, fαg� ¼ −0.1π∕2, fβg� ¼ −0.001), (l ¼ −1,
fαg� ¼ −0.1π∕2, fβg� ¼ −0.002), (l ¼ −1, fαg� ¼ −0.1π∕2,
fβg� ¼ −0.003), and (l ¼ −1, fαg� ¼ −0.1π∕2, fβg� ¼
−0.004), four distinct images “9,” “10,” “11,” and “12” are re-
constructed at the focal plane of the lens, respectively. These
results demonstrate that by utilizing the specific β values
associated with the incident VL beams, four images can be
effectively encrypted from a single multiplexed hologram.
Figures 6(f)–6(i) illustrate the capture intensity distributions of
the aforementioned VL beams, respectively. Upon illumination
of the multiplexed OAML-preserved hologram by a planar
beam, four images manifest simultaneously, appearing indistin-
guishable from each other, as shown in Fig. 6(j). We also have
studied the multiple parameters OAML multiplexed hologram
(see Supplementary Notes 3–6 in the Supplementary Material).

4 Conclusion
In this study, we introduced OAML multiplexed holography as
an innovative approach to enhance holographic multiplexing
capabilities. Our method involves modulating key parameters,
including the rotation angle of the square lattice, the angle
between the wave normal and the z axis (which determines
the size of the square lattice), and the topological charge. By
manipulating these parameters, we achieved multidimensional
multiplexing within holography. It is worth noting that these
parameters are mutually orthogonal, allowing for independent
control. Furthermore, we conducted a comprehensive investi-
gation into the selectivity of the OAML mode based on the
aforementioned parameters, enabling efficient multiplexing in
holography. Experimental verification unequivocally demon-
strated the feasibility of OAML multiplexed holography and
its potential applications in enhancing information encryption.
This significant advancement in multiplexed holography holds
great promise for various fields, including optical communica-
tion, optical encryption, and 3D display.

Code and Data Availability
Data underlying the results presented in this paper can be
obtained from the authors upon reasonable request.
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