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Abstract. We have developed a sphere–cylinder birefringence model (SCBM) for anisotropic media. The new
model is based on a previously published sphere–cylinder scattering model (SCSM), but the spherical and cylind-
rical scatterers are embedded in a linearly birefringent medium. A Monte Carlo simulation program for SCBM was
also developed by adding a new module to the SCSM program to take into account the effects of birefringence.
Simulations of the backscattering Mueller matrix demonstrate that SCBM results in better agreement with experi-
mental results than SCSM and is more suitable to characterize fibrous tissues such as skeletal muscle. Using Monte
Carlo simulations, we also examined the characteristics of two-dimensional backscattering Mueller matrix of SCBM
and analyzed the influence of linear birefringence. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1

.JBO.17.12.126016]
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1 Introduction
In the last few years, there has been increasing research interest
in polarized light propagation in biological tissues. Most tissues
are fibrous. Characterization of such structurally anisotropic tur-
bid media has been the subject of some recent works using
Monte Carlo simulation.1–4 In those studies, Mueller matrix
served as a powerful tool to obtain pathological information on
biological samples5–8 and evaluate the validity of tissue models
and simulations. Antonelli et al.2 proposed a Monte Carlo model
including large and small spherical scatterers in a single layer
above the Lambertian substrate to explain the experimental
backscattering Mueller matrix images of colon tissues. Wood
et al.4 presented a Monte Carlo model for birefringent, optically
active, multiply scattering media to describe the propagation of
polarized light in biological tissues. Wang and Wang9 proposed
a sphere birefringence model (SBM) which contains spherical
particles randomly suspended in linearly birefringent media.
The scattering property of the medium is isotropic, and birefrin-
gence is the only source of anisotropy. Recently, we proposed a
sphere–cylinder scattering model (SCSM) to characterize the
anisotropic scattering property of fibrous tissues such as bulk
skeletal muscles.10,11 In that model, the anisotropy of the fibrous
tissues is entirely attributed to the scattering of cylindrical scat-
terers. However, for complicated tissues, both cylindrical scat-
terers and the birefringence effect may coexist and contribute to
anisotropic phenomena. In this paper, we present a new model
containing both contributions and confirm its validity by com-
paring the simulations with experimental results.

We start from SCSM and construct the sphere–cylinder bire-
fringence model (SCBM) by adding a birefringent medium
around the spherical and cylindrical scatterers. The Monte Carlo

program for SCSM12 is also modified for SCBM. We use the
new program to simulate the backscattering Mueller matrix pat-
terns of a sphere–cylinder birefringence medium and analyze the
influence of birefringence on the patterns. Comparisons to the
experimental backscattering Mueller matrix patterns of skeletal
muscle show that SCBM results in better agreement than SCSM
and SBM, which verifies the assumption on the two sources of
tissue anisotropy and demonstrates that SCBM is a more general
model to characterize fibrous tissues such as skeletal muscle.

2 Method: Monte Carlo Simulation

2.1 SCBM for Anisotropic Media

As shown in Fig. 1, SCBM approximates the anisotropic turbid
medium to a mixture of solid spherical and infinitely long
cylindrical scatterers embedded in a linearly birefringent med-
ium. In this work, we assume that the surrounding medium is a
uniaxial material with its extraordinary axis being along the
direction of the cylinders.9 Parameters for the scatterers are the
same as those for the SCSM.11 They include number densities
and sizes of both the spheres and cylinders, and the mean value
and standard deviation of the angular distribution for the cylin-
ders. Parameters for the surrounding medium include the value
and axis direction of birefringence. Both the cylindrical orienta-
tion and the axis direction of birefringence can be adjusted in the
three-dimensional (3-D) space. SCBM reduces to SCSM if the
birefringence is set to zero, or to SBM if the scattering coeffi-
cient of the cylinders is set to zero.

2.2 Monte Carlo Algorithm

The Monte Carlo program for SCBM was developed based on
the polarization-sensitive SCSM program,12 which tracks the
trajectory and polarization state of photons. In the SCSMAddress all correspondence to: Hui Ma, Tsinghua University, Graduate School at
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program, after each scattering event, the photon moves along a
new direction determined by the Mie theory13,14 and may lose
part of its energy because of the absorption. A statistical method
was designed to determine whether the photon is scattered by
the cylinders or the spherical particles. The simulation process
continues until the photon is completely absorbed or moves out
of detection range. For SCBM, as the polarized photons transmit
in the anisotropic medium, they alternately experience the trans-
mission process in the birefringent medium and the scattering
process by the spherical or infinitely long cylindrical scatterers.

The Monte Carlo program for SCBM was also developed
based on the polarization-sensitive SCSM program12 and the
SBM program,9 which describes the detailed algorithm of the
birefringence module. In SCBM, we assumed that the birefrin-
gence effect is the property of the surrounding medium and does
not affect the scattering phase function, but the birefringence
does alter the polarization states of the photons as they propa-
gate between two successive scattering events.9,15 We added a
new module to the SCSM Monte Carlo program to calculate
the effects of birefringence.

In SCSM, the polarization states of the photons are altered by
scattering only. If the medium around the scatterers is birefrin-
gent, a scattered photon undergoes retardation between succes-
sive scatterings. The new module calculates the changes of
Stokes vector due to the birefringent medium:

S 0 ¼ Rð−βÞMðδÞRðβÞS; (1)

where MðδÞ is the Mueller matrix of the standard retarder and
RðβÞ is the rotational matrix. MðδÞ can be expressed by

MðδÞ ¼

2
664
1 0 0 0

0 1 0 0

0 0 cos δ sin δ
0 0 − sin δ cos δ

3
775; (2)

where δ is the retardation, which can be obtained by

δ ¼ 2πsn̄
λ

Δn 0; (3)

where s is the transport path length between two successive scat-
tering events, n̄ is the average refractive index, λ is the wave-
length of light, and Δn 0 is the difference in refractive indices
expressed by

Δn 0 ¼ n 0
eðθÞ − no ¼

none
ðn2o sin2 θ þ n2e cos2 θÞ1∕2

− no; (4)

where θ is the angle between the propagation direction of the
photon (u

⇀
) and the extraordinary axis (→ e). The birefringence

value is defined by Δn ¼ ne − no, where ne and no are the
refractive indices along the extraordinary and ordinary axes,
respectively. RðβÞ can be expressed by

RðβÞ ¼

2
664
1 0 0 0

0 cos 2β sin 2β 0

0 − sin 2β cos 2β 0

0 0 0 1

3
775; (5)

where β is the rotational angle expressed as

β ¼ tan−1
�
−
w · o 0

v · o 0

�
; (6)

where o
⇀ 0

is the projection of the ordinary axis onto the Stokes
v
⇀ − w

⇀
plane.

2.3 Validity Test: Comparison with SBM

The SCBM becomes SBM if the scattering coefficient of cylin-
ders is set to zero. To test the validity of the new module, we set
the scattering coefficient of the cylinders to zero in the SCBM
program and compared the simulated Mueller matrix patterns
with previously published results of SBM.16 Figure 2 shows
the simulation results of both models using the same set of
parameters for the spheres and birefringent medium.16 For the
spheres, the diameter is 0.46 μm and the scattering coefficient is
10 cm−1. The average refractive index of the birefringent
surrounding medium is 1.34, and its extraordinary axis is
along the horizontal x axis. The maximum retardation at the
transport length distance is calculated by ΔTR ¼ 2πΔnlTR∕λ

0 ¼
2πΔn∕½λ0

μsð1 − gÞ�.16 In Fig. 2(a)–2(d), the birefringence value
takes 0, 1.5 × 10−6, 7.5 × 10−6, and 4.5 × 10−5, corresponding

Fig. 1 Schematics of the sphere–cylinder birefringence model (SCBM).

Fig. 2 Monte Carlo–simulated backscattering Mueller matrices of the
SBM: ΔTR ¼ 0 (a); ΔTR ¼ 0.1 (b); ΔTR ¼ 0.5 (c); and ΔTR ¼ 3 (d).
Each image size is 1 × 1 cm. Note that the m11 images used the
same color maps but with the range from 0 to 1.
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to ΔTR ¼ 0, 0.1, 0.5, and 3, respectively. Figure 2 shows a good
agreement between the simulation results of SCBM and SBM.

2.4 Validity Test: Comparison with Mueller Matrix
Experiments

2.4.1 Experiment setup

Figure 3 shows a typical experimental setup for backscattering
Mueller matrix measurement.10 A polarized He-Ne laser (λ ¼
633 nm) is used as the light source. A quarter-wave plate
(QW1) and a linear polarizer P1 control the incident polarization.
The incident light reaches the sample through a small hole at the
center of the mirror (M), which is tilted at 45 deg to the incident

beam. The mirror directs the backscattered light from the sample
toward the camera through a quarter-wave plate (QW2) and a lin-
ear polarizer (P2). The backscattered light is imaged by a 14-bit
CCD camera (Canon APS-C). A laboratory reference frame is
defined such that both the muscle fiber orientation and the vertical
linear polarization direction are along the y axis.

In the experiments, six different polarization states were used
for both incidence and detection: horizontal linear (H), vertical
linear (V), 45-deg linear (P), 135-deg linear (M), right circular
(R), and left circular (L). A total of 36 reflectance images were
captured with different combinations of the six incidence and
detection polarization states. The Mueller matrix was calculated
from these images:

M ¼

2
664
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

3
775

¼ 1

2

2
664
HH þHV þ VH þ VV HH þHV − VH − VV PH þ PV −MP −MM
HH −HV þ VH − VV HH −HV − VH þ VV PH − PV −MH þMV
HP −HM þ VP − VM HP −HM − VPþ VM PP − PM −MPþMM
HR − LLþ VR − RL HR − VRþ VL −HL PR −MRþML − PL

RH þ RV − LH − LV
RH − RV − LH þ LV
RP − RM − LPþ LM
RR − RL − LRþ LL

3
775:

(7)

For convenience, each reflectance image is indexed by
two capital letters: the first letter represents the incidence
polarization state and the second letter represents the
detection polarization state. For example, HV represents
a reflectance image of horizontally polarized (H) inci-
dence and vertically polarized (V) detection.

2.4.2 Model sample for SCBM

In our previous work,10 we demonstrated that a sample with
polystyrene microspheres and well-aligned silk fibers immersed
in water can be used as the model sample of SCSM. Meanwhile,
other groups have reported of the model sample for SBM, which
includes spherical scatterers embedded in a linearly birefrin-
gence medium.4 The SBM sample consisted of polystyrene
microspheres immersed in a polymer hydrogel called polyacry-
lamide. During the experiments, the polyacrylamide sample was
strained via extension to create birefringence along the direction
of strain. In our sample developed for SCBM, scattering is pro-
duced through the addition of polystyrene microspheres and silk
fibers before the polymerization of the polyacrylamide, and

birefringence is produced through the straining of the polyacry-
lamide. The fabrication process of the polyacrylamide has been
described in detail in the previous publication.4 In addition, the
direction of both the strain (the extraordinary axis of birefrin-
gence) and direction of silk fibers, the scattering coefficient of
spherical scatterers, and the birefringence value can be adjusted
in our sample.

In this paper, the sample is a three-layered medium consist-
ing of a slab of well-aligned silk fibers along the y axis and poly-
styrene microspheres submerged in the hydrogel. The first and
third layers are 5-mm-thick hydrogel containing 0.2-μm-
diameter polystyrene microspheres (International Laboratory).
The refractive indices of the microspheres and polyacrylamide
are 1.59 and 1.39, respectively.4 The scattering coefficients are
5 cm−1 determined by the concentration of the microspheres.
The second layer contains only well-aligned silk fibers (pro-
vided by Guangxi Institute of Supervision and Testing on Pro-
duct Quality). The thickness of the silk fiber slab is 1 mm, and
the refractive index is 1.56. The diameter of the silk fiber, which
contains a substructure, is taken as 1.5 μm, and the scattering
coefficient of the silk layer is estimated as 65 cm−1 (Ref. 11).
To discriminate the anisotropy due to the birefringence effect of
the surrounding medium and the scattering by aligned cylinders,
we aligned the silk fibers along the y axis and the direction of
strain (the extraordinary axis of birefringence) along the 45-deg
angle axis on the x-y plane. The polyacrylamide sample was
strained with the extension of 5 mm (the maximum extension
is 6 mm), and the difference in refractive indices was about
1 × 10−5 (Ref. 4).

2.5 Results from the Experiment and SCBM
Simulations

Using the new program based on SCBM, we simulated the
experimental results of the sample. All the parameters used
in the simulation matched the experiments. As shown in

Fig. 3 Scheme of experimental setup. Light source (LS): 12-mW He-Ne
laser; P, polarizer; QW, quarter-wave plate; CCD, imaging camera.

Journal of Biomedical Optics 126016-3 December 2012 • Vol. 17(12)

Du et al.: Two-dimensional backscattering Mueller matrix of sphere–cylinder birefringence media



Fig. 4, the simulated result using SCBM agrees well with the
experimental result of the strained microsphere-silk polyacryla-
mide. Although Fig. 4(a) and 4(b) are still different quantita-
tively, the characteristic features in the two sets of Mueller
matrix elements are very similar. The detailed analysis about
the effect of birefringence on the backscattering Mueller matrix
is given in the following section.

3 Discussion

3.1 Comparison with the Simulations of SCSM

The characteristic features of the Mueller matrix of sphere scat-
tering media have been reported previously by other groups.17,18

For the isotropic scattering media, the Mueller matrix has diag-
onal symmetry properties. The m14 and m41 elements are
always blanks. The patterns of m11 and m44 are both circular.
The m12 element is quatrefoil, and its intensity distributions
along the x and y axes are nearly the same. The m22 element
has a symmetric cross-like pattern with almost identical inten-
sity distribution along the x and y axes. There are several pairs of
elements of similar intensity patterns but different rotations. For
example, m13 can be obtained by rotating m12 by 45 deg, and
the same relation applies to the m31∕m21, m22∕m33, and
m24∕m34 pairs.

In our previous paper,11 the Mueller matrix patterns of the
sphere–cylinder scattering medium were described in detail.
According to the Mie scattering theory for infinitely long cylin-
ders,13,14 polarization-maintaining photons tend to be scattered
in the direction perpendicular to the cylindrical scatterers (i.e.,
the x axis in Fig. 4). Therefore the intensity distributions of all
the Mueller matrix elements around the x axis are higher than
those around the y axis. For example, m11 has the typical rhom-
bus profile with an elongation along the x axis. m12 and m21
have similar shapes of quatrefoils, but the intensity along the x
axis is higher than that along the y axis. The total intensity dis-
tributions of them13 andm31 elements are weaker than those of
the m12 and m21 elements. The m22 element still shows a
cross-like pattern, but the intensity along the x axis is higher
than that along the y axis. The total intensity distribution
and size of the m33 element are weaker than those of the
m22 element.

Compared to the sphere–cylinder scattering medium, the
characteristic features of the Mueller matrix elements for the
sphere–cylinder birefringence medium are very different. Monte
Carlo–simulated backscattering Mueller matrix patterns of

SCSM and SCBM are shown in Fig. 5. The Mueller matrix ele-
ments have been normalized to the m11 element to compensate
for the radial decay of intensity. The extraordinary axis of the
birefringent medium is along the y axis in the laboratory frame.
For easier comparison, parameters of the scatterers are the same
as those in Ref. 11: The diameters of spheres and cylinders are
0.2 and 1.5 μm, and their refractive indices are 1.59 and 1.56,
respectively. The refractive index of the surrounding medium is
1.33. The cylinders are aligned in the x-y plane, and their orien-
tations fluctuate around the y axis following a Gaussian distri-
bution with a standard deviation of 10 deg half width. The
scattering coefficients of spheres and cylinders are 10 and
65 cm−1, respectively. In SCBM, since the birefringence value
of tissues ranges from 1 × 10−4 to 1 × 10−2 (Ref. 19), we set
Δn to 0, 5 × 10−4, 1 × 10−3, and 1 × 10−2.

Figure 5 shows the influence of linear birefringence on the
spatial intensity distributions of the backscattering Mueller
matrix elements. The detailed features are summarized as

Fig. 4 The backscattering Mueller matrices of the strained microsphere-silk polyacrylamide with silk fibers aligned along the y axis and the direction of
strain (the extraordinary axis of birefringence) along the 45-deg angle on the x-y plane (a) and the SCBM simulation (b). The size of each image is
1 × 1 cm. Note that the m11 images used the same color maps but with the range from 0 to 1.

Fig. 5 Monte Carlo simulations of backscattering Mueller matrices.
Sphere–cylinder scattering medium and a sphere–cylinder birefrin-
gence medium (a) withΔn ¼ 5 × 10−4 (b); Δn ¼ 1 × 10−3 (c); and Δn ¼
1 × 10−2 (d). The size of each image is 1 × 1 cm. Note that the m11
images used the same color maps but with the range from 0 to 1.
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follows: (1) The m11 has the same typical rhombus profile as
that in SCSM. Linear birefringence does not affect the m11 ele-
ment, which relates only to unpolarized light intensity. (2) The
m12 and m21 elements have the same shapes of quatrefoils, and
the m22 also has the same cross-like pattern, as those in the
SCSM simulations. For the present configuration, where both
the extraordinary axis and the cylindrical scatterers are along
the vertical (y) direction,m12,m21, andm22 are hardly affected
by linear birefringence. This is because the Mueller matrix pat-
terns represent mainly contributions from the polarization-main-
taining photons. These elements relate only to the horizontal
(0 deg) and vertical (90 deg) polarization components, which
are either parallel or perpendicular to the extraordinary axis and
subject to minimal effects due to the birefringent medium. (3)
The intensity distributions of the m13, m23, m33, m31, m32,
m33, and m44 elements are sensitive to birefringence Δn,
since circular or 45-deg and 135-deg linear polarization states
are affected by retardation due to birefringence. As Δn in-
creases, the m13, m31, m33, and m44 patterns stay in the
same shape but shrink in size. The shapes of the m23 and m32
patterns change to quatrefoils stretched along the x axis. (4) The
m14ðm41Þ), m24ðm42Þ, and m34ðm43Þ patterns have similar
shapes to those ofm13,m23, andm33, respectively, but the con-
trasts are different. The transformation between circular and
linear polarization states in the turbid medium is enhanced
by linear birefringence.9

3.2 Effects of the Value and Orientation of
Birefringence on the Mueller Matrix Patterns

In Fig. 6, we compare the different responses ofm22 andm33 to
changes in the birefringence value Δn while keeping both the
extraordinary axis and the cylindrical scatterers along the y

axis in the laboratory frame. As the value of birefringence Δn
increases, the total intensity of m22 remains almost the same,
but the m33 intensity decreases rapidly and approaches zero
when Δn exceeds 1 × 10−3. One may use m33 to detect the pre-
sence of birefringence.

As Δn increases, the intensity of the m13, m23, m31, m32,
and m44 Mueller matrix elements quickly decrease to zero, and
the terms related to 0-deg or 90-deg linear polarization (m12,
m21) remain almost the same. These phenomena are consistent
with the simulation results of SBM (see Fig. 9 in Ref. 9), in
which the degree of polarization (DOP) of diffusely reflected
light does not change significantly with Δn when the incident
light is in horizontal (0 deg) or vertical (90 deg) polarization, but
does decrease fast and approaches zero with increasing Δn if the
incident light is 45-deg linear polarization or circle polarization.
The decrease of DOP means more recorded photons are depo-
larized and the Mueller matrix loses their features. The intensity
of the m14, m24, m34, m41, m42, and m43 elements will first
increase then quickly decrease to zero as Δn increases from
zero. This is also consistent with the simulation results of SBM
(see Fig. 4 in Ref. 16).

In the above simulations, the extraordinary axis of birefrin-
gence has been set parallel to the orientation of the cylindrical
scatterers, and to the y axis of the laboratory frame. We may also
assume that the two directions are different and simulate the
Mueller matrix patterns for different orientation of the extraor-
dinary axis. As shown in a previous work,11 the long axis of the
m11 pattern is always perpendicular to the direction of the
fibers. For simplification, we set the direction of the cylindrical
scatterers along the y axis in the laboratory frame and the extra-
ordinary axis of birefringence in the x-y plane. All the patterns
except for the m11 display asymmetric behavior, as shown in
Fig. 4(b). A further study indicates thatm22 is the most sensitive
to the angle mismatch. As shown in Fig. 7, we changed the
extraordinary axis from the x axis to y axis at intervals of
15 deg in the simulations while keeping the other parameters
the same as in Fig. 5(c). The m22 pattern has a cross-like
shape when the extraordinary axis is parallel or perpendicular
to the cylinders, but is distorted when neither the fast axis
nor the slow axis of birefringence matches the fiber orientation.
Therefore, the m22 pattern may serve as an indicator for the
mismatch between the directions of the birefringence axis and
the fiber orientation. In real biological tissues, the birefringence
axis may vary in the 3-D space. The corresponding features can
also be simulated using the current SCBM program.

3.3 Comparison with Experimental Results on
Skeletal Muscles

In a previous paper,10 we demonstrated that SCSM can be used
to characterize the structural and optical properties of skeletal
muscle. The Mueller matrix elements of both skeletal muscles
and a model sample containing polystyrene microspheres and
silk fibers show very similar features. However, more careful

Fig. 6 The total intensity of m22 and m33 with different birefringence
valueΔn. The extraordinary axis of the birefringence and the cylindrical
direction are both along the y axis in the laboratory coordinate. The data
are normalized by the maximum of m22.

Fig. 7 m22 patterns from sphere–cylinder birefringence media with the cylinders aligned along the y axis and the angle between the extraordinary axis
and x axis of 0, 15, 30, 45, 60, 75, and 90 deg.
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examinations reveal inconsistency between the experimentally
obtained and the simulated results. For example, the third row
and the third column of the simulated Mueller matrix using
SCSM display clear patterns that are not apparent in the experi-
mental results of skeletal muscle. Simulations using SCBM
show that this discrepancy is due to the birefringence effect.

In the present work, the skeletal muscle samples are fresh
bovine sternomandibularis muscle excised from the animals 2 h
after slaughtering. The Mueller matrix elements of the skeletal
muscle were compared with the simulations using SCBM,
SCSM, and SBM as shown in Fig. 8.

The following parameters are used in the SCBM. The extra-
ordinary axis of the birefringent surrounding medium and the
direction of the muscle fibers are both along the y axis. The bire-
fringence value Δn is 2 × 10−3 (Ref. 20). The diameters of the
spheres and infinitely long cylinders are 0.2 and 1.5 μm, respec-
tively, and the refractive indices of scatterers are both 1.4. The
average refractive index of the surrounding medium is taken as
1.33. The standard deviation of angular distribution of the cylin-
ders is 10 deg. Using the previous published results10 as a refer-
ence, the ratio of the scattering coefficients of spheres and
cylinders is set at 1∕4 to give the best match between the shapes
of the experimental and simulated images. The total scattering
coefficients along the y axis is 50� 10 cm−1, which is close to
the scattering coefficient of the skeletal muscle.10 In the SCSM,
the birefringence value is set to zero, and in the SBM, the scat-
tering coefficient of cylinders is set to zero. The other para-
meters are the same as those in the SCBM.

Compared with the experiments, simulations of the three ani-
sotropic models (SCBM, SCSM, and SBM) had respective simi-
larities and differences. The characteristic features in the
Mueller matrix patterns of anisotropic turbid media showed con-
tributions by both optical anisotropy due to birefringence and
scattering anisotropy due to cylindrical scatterers.

As shown in Fig. 8, for the Mueller matrix elements of a mus-
cle sample, m11 has the typical rhombus shape, and m22 has a
cross-like pattern with the dominant distribution along the x
axis. The simulations using SCBM and SCSM regenerated simi-
lar features in these two elements. However, simulations using
SBM resulted in totally different shapes. Them11 pattern is cen-
trosymmetric and m22 has a symmetric cross-like pattern with
identical intensity distributions along the x and y axes. Thus one
has to include cylindrical scatterers in the model to regenerate
these characteristic features in m11 and m22 of anisotropic tis-
sues. These features of m11, m12, m21, and m22 are due to the
anisotropy of the cylinders, since the polarization-maintaining
photons tend to be scattered to the direction perpendicular to
the cylindrical scatterers (the x axis).11

On the other hand, the third and fourth rows and columns of
the experimentally obtained Mueller matrix for the muscle sam-
ples show only weak patterns. Simulations using both SCBM
and SBM regenerated such features, but simulations using
SCSM resulted in much clearer patterns, for example clear qua-
trefoils for the m13 and m31 elements. More detailed simula-
tions using SCBM showed that the birefringence effect is
responsible for smoothing out the distinctive features in the
third and fourth rows and columns of the Mueller matrix
elements.

The above analysis proves that simulations using SCBM
result in better agreements with the experiments than SCSM
and SBM. It should be pointed out that the Mueller matrix
elements related to the third and fourth rows and columns do
not show good agreements between the skeletal muscle experi-
ments [Fig. 8(a) and also Ref. 7] and the SCBM simulations
[Fig. 8(b)]. Simulation shows that these elements are all weak
and noisy when birefringence exists, as shown in Fig. 8(b) and
8(d). The corresponding experimental patterns also display
noisy and irregular patterns,7 which may also contain measure-
ment errors and inhomogeneity effects of the tissue sample.

One has to consider contributions from both the cylindrical
scatterers and the birefringence effect to explain the character-
istic features of polarized photons scattering in complicated ani-
sotropic turbid media such as skeletal muscles. These two terms
on tissue anisotropy are perhaps corresponding to the anisotropy
of form defined by the tissue microstructure and the anisotropy
of material controlled by intrinsic anisotropic character of meta-
bolic molecules.20

In addition, all the experimentally obtained m22 elements
showed cross-like patterns without distortion. From the above
analysis in Sec. 3.2, we conclude that the extraordinary axis
of the birefringent media is parallel to the direction of the fibrous
structures in all the samples we have measured, including the
skeletal muscles. This may be a hint that the two come from
the same origin.

4 Conclusion
Based on the sphere–cylinder scattering model (SCSM), a
sphere–cylinder birefringence model (SCBM) was developed by
adding birefringence to the medium surrounding the scatterers.
The Monte Carlo program for SCSM was also revised for
SCBM to take into account the birefringence effects. The char-
acteristics due to birefringence were examined by comparisons
between the simulated backscattering Mueller matrix patterns
using both SCSM and SCBM. It was found that the third
and fourth rows and columns of the Mueller matrix elements no
longer had distinctive patterns when the birefringence exceeded

Fig. 8 The backscattering Mueller matrices of fresh skeletal muscle (a),
the SCBM simulation (b), the SCSM simulation (c), and the SBM simula-
tion (d). The muscle fiber orientation, the extraordinary axis of the bire-
fringent medium, and the cylinder orientation are all along the y axis.
Note that the m11 images used the same color maps but with the range
from 0 to 1.
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a certain value. These matrix elements may serve as good indi-
cators of strong birefringence. If the extraordinary axis is not
parallel to the orientation of the cylinders and the y axis, all
the Mueller matrix elements except m11 will be distorted.
These matrix elements can be used to detect the mismatch
between the extraordinary axis and the orientation of the fibrous
structure. Finally we compared the experimental results of a ske-
letal muscle sample with the simulations using the different tis-
sue models, i.e., SCBM, SCSM, SBM, and the simulations from
the SCBM can reveal the characteristic features of the Mueller
matrix patterns of anisotropic tissues such as muscles better than
those from SCSM and SBM. The good agreement between the
experiments and the simulations using SCBM confirms that for
fibrous biological tissues, both optical anisotropy, such as bire-
fringence, and scattering anisotropy contribute to the anisotropy
of fibrous tissues. The experimental results also prove that the
extraordinary axis of anisotropy and the orientation of fibrous
structure are always in parallel for the muscles, which may
hint that the two are interrelated.
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