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Abstract. With no sufficient screening test for ovarian cancer, a method to evaluate the ovarian disease state quickly
and nondestructively is needed. The authors have applied a wide-field spectral imager to freshly resected ovaries of
30 human patients in a study believed to be the first of its magnitude. Endogenous fluorescence was excited
with 365-nm light and imaged in eight emission bands collectively covering the 400- to 640-nm range. Linear
discriminant analysis was used to classify all image pixels and generate diagnostic maps of the ovaries. Training
the classifier with previously collected single-point autofluorescence measurements of a spectroscopic probe
enabled this novel classification. The process by which probe-collected spectra were transformed for comparison
with imager spectra is described. Sensitivity of 100% and specificity of 51% were obtained in classifying normal
and cancerous ovaries using autofluorescence data alone. Specificity increased to 69% when autofluorescence
data were divided by green reflectance data to correct for spatial variation in tissue absorption properties. Benign
neoplasm ovaries were also found to classify as nonmalignant using the same algorithm. Although applied ex vivo,
the method described here appears useful for quick assessment of cancer presence in the human ovary. © 2012 Society

of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.3.036003]
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1 Introduction
Ovarian cancer is a particularly deadly disease that, as of 2010,
had a five-year survival rate of 46% in the United States.1 Cur-
rently, no screening test is capable of consistently detecting the
disease at the early, localized stage.1 For this reason, only 15%
of all ovarian cancer cases are diagnosed at the localized stage in
which the disease is highly curable.1 It is well documented that
approximately 90% of ovarian cancers arise in the epithelium,2

or surface layer of the ovary, which validates the feasibility of
laparoscopy for early ovarian cancer screening.

One promising approach for disease detection and localiza-
tion in numerous organ sites has been spectroscopic evaluation
of endogenous tissue contrast using both fluorescence and
reflectance-based techniques.3 Autofluorescence spectroscopy
has been applied to distinguish malignancy in tissues of the
human lung, breast, skin, oral cavity, cervix, gastrointestinal
tract, brain, bladder, and ovary.4 These studies of native tissue
fluorescence, including both steady-state and time-resolved
measurements, have been extensively reviewed.3,5–8 Diffuse
reflectance spectroscopy (DRS) has likewise been applied to
all the tissues mentioned above, with emphasis on the
skin,9,10 breast,11–15 brain,16–18 and cervix.19–21

While “point” spectroscopy techniques based on autofluor-
escence, diffuse reflectance, or some combination of the two
have shown promise for noninvasive optical biopsy, these meth-
ods have not gained common clinical usage, let alone supplanted

the standard needle biopsy or excisional biopsy. The spectro-
scopic diagnostic devices that have reached commercializa-
tion22–24 have combined both spectral and spatial information
through spectral imaging—also called “multispectral” or
“hyperspectral” imaging. This method is realized either through
the collection of images at various wavelength bands or by the
acquisition of spectra at a multitude of point locations. Recently,
Balas25 reviewed the status of spectral bioimaging. Spectral
imaging of autofluorescence seems to have found its niche as
a means of improving the visualization of neoplastic lesions
on the cervix,23 in the mouth,26 and, endoscopically, in the
lungs22 and the gastrointestinal tract.24

Another promising optical biopsy method for cancer is the
time-resolved version of autofluorescence imaging, known as
fluorescence lifetime imaging (FLIM). In this method images
are constructed from spatially resolved fluorescence lifetime
measurements. Fluorescence lifetimes, like autofluorescence
intensity and spectral shape, have been proven useful in deter-
mining tissue pathological state. FLIM endoscopes and micro-
scopes have been developed for distinguishing cancer in the
lungs,27 skin,28 oral cavity,29 and brain.30 FLIM provides bene-
fits over steady-state fluorescence imaging that include insensi-
tivity to illumination intensity and reduced sensitivity to tissue
optical properties. While FLIM is a promising imaging modal-
ity, it also has drawbacks including increased instrumentation
complexity and measurement acquisition time. FLIM will not
be discussed in detail here as the spectral imager of this
study incorporated only steady-state fluorescence acquisition.
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Speaking again of spectral imaging in general, clinicians
typically use spectral images together with their own experience
to select tissue locations to biopsy and analyze with standard
histology, the gold standard for diagnosis. However, automated
analysis of tissue spectral images renders optical diagnosis more
objective and reduces the need for an experienced clinician with
optical knowledge to perform the evaluation. For example,
tissue images can be transparently overlaid with false-color
maps indicating a simplified optical diagnosis. Several groups
have demonstrated spectral image analysis enhancements
with varying degrees of automation.31–37

In the study described here, we have applied a 365 nm-excitation
multispectral imager (MSI) to freshly resected whole human
ovaries, collecting autofluorescence images in eight different
spectral bands spanning the 400 to 640 nm visible range as
well as reflectance images in four different visible spectral
bands. To our knowledge, this is the first wide-field spectral
imaging study of human ovary autofluorescence of this magni-
tude. We diagnostically map large areas of tissue by utilizing
linear discriminant analysis and a library of previously-collected
fluorescence probe spectra (from ovarian biopsies of histology-
confirmed diagnosis). The incorporation of training data from a
second instrument was necessary due to the impracticality of
extensive biopsy of all the ovaries imaged in the study. We
elaborate a process for transforming the probe spectra, enabling
one-to-one comparison with MSI spectra. Sensitivity of 100%
and specificity of 51% were obtained using fluorescence data
alone for the diagnostics. Specificity was increased to 69%
after correcting autofluorescence data for variation in tissue opti-
cal properties. The correction used was a division of measured
autofluorescence by green reflectance data also collected by
the MSI.

2 Materials and Methods

2.1 Clinical Studies and Ovarian Pathology

Multispectral fluorescence images of 49 whole human ovaries
from 30 patients were collected ex vivo through a clinical study
at the University Medical Center of the Arizona Health Sciences
Center at the University of Arizona in Tucson. The study
(A02.31/OB/GYN) was approved by the Institutional Review
Board (IRB) of the University of Arizona, and informed consent
was obtained from each patient before tissue imaging occurred.
All study participants were women undergoing planned oophor-
ectomy either for disease treatment or as prophylaxis. The aver-
age patient age was 58, and 25 of the 30 patients were
postmenopausal.

In this study an MSI with 365-nm illumination was used to
perform fluorescence spectroscopy. The goal was to define
regions of abnormal tissue as well as any tumor margins that
might be present in images by observing spatial variations in
autofluorescence. A central assumption was that tissue pathol-
ogy could vary across a single wide-field image. It was, there-
fore, desirable to have histopathological results frommany small
tissue areas in order to validate diagnostic mapping; however,
time restrictions of the pathologist prevented each ovary from
being completely sectioned and microscopically analyzed.
Instead, the standard gross pathology assessment was per-
formed; that is, one to three sections of each ovary were
made and analyzed to determine a diagnosis.

In the absence of complete sectioning and histopathology of
the whole ovaries in the imaging study, we elected to utilize a

second dataset collected previously as part of a nonimaging
(single-point) ovarian autofluorescence study (#02-113/OB/
GYN).In that study, small excisional biopsies were collected
from each ovary at the site of each probe-based spectral mea-
surement and sectioned for microscopic analysis. This single-
point spectral dataset and corresponding histopathology were
used to train a classifier that we applied to the tissue spectral
images collected by the MSI.

For our purposes, it was useful to group all of the numerous
ovarian pathologies into four general categories: normal (no
structures except stroma, epithelium, corpus albicans, and
corpus luteum), benign neoplasm (abnormal growth without
invasive areas), cancer (invasion of carcinoma into the
ovary), and endometriosis (growth of both endometrial glands
and stroma on the ovary). Included in our analysis are 92
sets of multispectral images collected from 24 ovaries of normal
pathology, 10 sets of multispectral images collected from three
ovaries of benign neoplasm pathology, 12 sets of multispectral
images collected from two ovaries of cancer pathology, and 30
sets of multispectral images collected from six ovaries of endo-
metriosis pathology. Excluded measurements are detailed in
Sec. 3.7. The diagnostic classifier was trained using only ovaries
of normal and cancer pathological diagnoses but then applied to
ovaries of all four aforementioned pathologies. Histopathology
was used as the diagnostic gold standard.

2.2 MSI

A multispectral imaging system (SEAtreat, Apogen Technolo-
gies, Inc., now QinetiQ North America, San Diego, CA), hen-
ceforth referred to as the MSI, was used for automated
acquisition of both fluorescence and reflectance images of
whole ovaries. The imager, whose simplified optical layout is
presented in Fig. 1, has a fixed focus at a working distance
of 30 cm, field-of-view 40 mm × 33 mm, and resolution
580 × 475 pixels. The device acquires four spatially registered
images simultaneously on a single charge-coupled device
(CCD) using a patented technique,38,39 Quad-Prism Aperture
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Fig. 1 Simplified optical layout of the multispectral imaging device
(SEAtreat, Apogen Technologies, Inc., now QinetiQ North America,
San Diego, CA). Each lens depicted represents multiple elements.
The system used single excitation of 365 nm and eight fluorescence
emission bands covering the visible range (400 to 640 nm). The system
used white light illumination when capturing crossed-polarization
reflectance images. QPAS allowed simultaneous capture of four
uniquely filtered images on a single CCD.
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Splitting (QPAS). Fluorescence illumination is provided by
the MSI using a short-arc mercury lamp (LC6 series,
Hamamatsu, Bridgewater, NJ) filtered to include only the
ultraviolet line emission at 365 nm and coupled to a fiber-
optic bundle that carries the light from the lamp to the imaging
head. Ultraviolet (UV) light is projected onto the tissue at a
power density of 18 mW∕cm2 and excites a broad spectrum
of autofluorescence, which is collected, divided into four paral-
lel optical paths (each uniquely bandpass-filtered), and imaged
onto four quadrants of a single CCD. A motorized filter wheel
allows rapid exchange of the bandpass quad-filter, and thus a
total of eight images are collected by two consecutive exposures
of the CCD. The eight fluorescence emission bandpass filters
effectively cover the spectrum from 400 to 640 nm with little
overlap. The filter center wavelengths are 420, 440, 455,
485, 510, 530, 560, and 600 nm.

For reflectance imaging, a halogen bulb provides linearly
polarized white light illumination at a power density of
8 mW∕cm2. A different set of quad-filters is rotated into the
optical path for collection of each set of reflectance images.
Each reflectance quad-filter has blue, green, red, and near-infra-
red quadrants and is masked by a polarizer whose transmission
axis is either crossed or parallel in comparison to the polariza-
tion of the illumination. Light that is reflected specularly at the
tissue surface is highly attenuated by the crossed polarizer.

2.3 Multispectral Imaging Procedure

Oophorectomy was typically laparoscopic, but in some cases an
open surgery was performed. Whole ovaries and attached fallo-
pian tubes were severed via electrosurgery. Removal of tissue
from the body occurred sometimes through one of the laparo-
scopic incisions (after placement of ovary in a protective plastic
bag) and sometimes vaginally (in coordination with a hysterect-
omy. Each ovary was bathed in room temperature saline solution
and transported in a metal bowl. Care was taken to always grasp
the ovaries by the fallopian tube to avoid damage to the fragile
ovarian epithelium. Ovaries were taken to a darkened room and
placed on a plastic Petri dish for imaging. A solution of phos-
phate-buffered saline (PBS), glucose, and L-glutamine was used
to rinse blood from the ovarian surface and to maintain moisture
during imaging. Imaging typically began within 30 min after
loss of blood supply to organ and required 5 to 8 min from
start to finish. In all cases, imaging began less than 60 min
after loss of blood supply to organ. Data collection within
90 min of biopsy has been shown to minimize difference of
ex vivo fluorescence measurements compared to in vivo.40

Typical integration times were 100 ms for fluorescence images,
5 ms for parallel-polarization reflectance images, and 13 ms for
crossed-polarization reflectance images.

2.4 Single-Point Spectral Data

Single-point autofluorescence data were collected from fresh
5- to 10-mm-sized ovarian tissue biopsies as part of a previous
study also at the University Medical Center at the Arizona
Health Sciences Center (#02-113/OB/GYN).In total, 249
single-point spectra were collected from 49 patients, with
186 of the spectra being collected from ovarian tissue deemed
histopathologically normal, 25 being collected from tissue
deemed cancer, 10 collected from tissue deemed endometriosis,
and eight from tissue deemed benign neoplasm. The remaining

20 measurements could not be used because pathology was
unavailable.

The device used to collect single-point spectral data was pre-
viously described;41,42 briefly, a spectrofluorometer (FluoroLog
3-22, JY Horiba, Edison, NJ) using double excitation and emis-
sion spectrographs coupled to a custom fiber-optic probe that
was used to interrogate a tissue spot of 800-micron diameter.
The six-around-one fiber configuration probe was positioned
in contact with the surface epithelium allowing the weight of
the probe to contact the tissue. Spectra were recorded from
three to four locations on each biopsy. Biopsies were placed
in chilled Roswell Park Memorial Institute (RPMI) culture
medium (Media Tech, Herndon, VA) and transported to the
optics laboratory. Typically, fluorescence measurements were
performed within 60 min after removal. Subsequently, tissue
was fixed and processed with standard histological procedures.
A pathologist examined each ovarian biopsy at University
Medical Center, and pathology results were obtained.

The collected single-point data was in the form of an excita-
tion emission matrix (EEM) with 14 different excitation wave-
lengths from 270 to 550 nm. Data were calibrated for variations
in excitation power as well as spectral sensitivity of the detector.

2.5 Single-Point Spectral Data Conversion Process

The single-point autofluorescence data EEM are of relatively
high spectral resolution, sampled every 5 nm, while the MSI
data are low-resolution “spectra,” which include only eight mea-
surements over the same emission range (see Fig. 2).The eight-
point MSI spectra are not spectra in the strictest sense because
each spectral image is weighted by the system’s spectral sensi-
tivity, which varies with the transmission characteristics of the
optical filters used for collection. For one-to-one comparison of

Fig. 2 Background: Multispectral image stack. Eight autofluorescence
images of a whole human ovary were excited by 365-nm-filtered mer-
cury lamp and each captured using a different bandpass filter between
400 and 640 nm. Foreground: An eight-point fluorescence spectrum of
the tissue can be extracted at each pixel, given spatial registration of all
the stack images.
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these two datasets, we needed either to weight the single-point
EEM data with the spectral sensitivity characteristics of the MSI
yielding eight-point filter-weighted spectra or to convert the
eight-point MSI spectra into true spectra.

Mathematically, it was easier to transform the single-point
EEM spectra to the eight-point spectral space of the MSI.
We accomplished this by multiplying the single-point spectra
by the measured sensitivity characteristics of the MSI at each
filter configuration. This filter-weighting process is illustrated
in Fig. 3. Notice that each horizontal line of data in the sin-
gle-point EEM corresponds to a different excitation wavelength.
We utilized only the portion of the EEM corresponding to
365-nm fluorescence excitation (denoted with black line and
arrows in Fig. 3), as this was the only excitation wavelength
of the MSI.

2.6 MSI Data Pre-Processing and Calibration

Image processing and analysis was performed using MATLAB
(The MathWorks, Natick, Massachusetts). Each set of raw
image data from the CCD was 1024 × 1280 pixels and con-
tained four images—one 512 × 640 pixel image from each
quadrant. A corresponding set of dark images was captured
for each image set. Manufacturer-provided code was used to
perform image pre-processing as follows. The first step involved
breaking the composite image into four separate images. Then
spatial registration of the images and correction of distortion
were performed. Next, dark subtraction and flat field illumina-
tion correction were applied. Scale factors were used to account
for differences in integration time.

Weimplementedadditionalpre-processingsteps to theoriginal
MATLAB code. Background subtraction of a nonfluorescing
standard was applied to correct for device autofluorescence.
The subtracted background measurement was taken in a dark
room with imager viewing a distant, nonfluorescent black
cloth. The power level of the UV source was measured daily
with a power meter, and any variation was corrected for in the
images via a scale factor.

The MSI data and single-point spectra compared in this study
were collected by two different devices utilizing different means

of wavelength selection and different detectors. As a result, cali-
bration for the spectral response of each system was required. To
eliminate device-dependent differences in collected spectra,
solid and liquid fluorescence standards were imaged with the
MSI and also measured with the spectrofluorometer. The
solid standards used were tetraphenylbutadiene (TPB) and rho-
damine B (Starna Ltd., Hainault, UK), while the liquid standard
was fluorescein in a quartz cuvette (Molecular Probes,
Eugene, OR).

For a one-to-one comparison of the measured eight-point
fluorescence spectra to the known spectra provided by the man-
ufacturer of the fluorescence standard, it was necessary to
weight the known fluorescence spectrum of each standard
with the spectral sensitivity characteristics of the MSI (through
the process illustrated previously in Fig. 3).

Division of the calculated eight-point fluorescence emission
spectrum of a fluorescence standard by its measured eight-point
spectrum yielded a set of correction factors for the absolute
spectral response of the MSI. Applying these multiplicative cor-
rection factors to the spectral images captured by the device
allowed calibrated fluorescence emission spectra to be extracted
from the collection of uniquely filtered, spatially registered
images.

2.7 Intensity Matching of MSI Data to Single-Point
Data

Finally, to compare the single-point emission spectra and the
MSI spectra, only intensity equalization was lacking. We
aimed to calculate a single scale factor that would adjust the
fluorescence intensities collected by the spectrofluorometer to
be on the same level as those collected by the MSI. Instead
of comparing measurement intensities of fluorescence standards
between the two systems, we found that calibrating the intensity
distributions of all measurements made on ovaries deemed
normal by histopathological evaluation was an appropriate
procedure.

The single-point measurement intensity histogram (com-
posed of 186 measurements on normal tissue) and MSI data
intensity histogram (composed of 92 measurements on normal

Fig. 3 Conversion of single-point spectral data. The input data was an excitation emission matrix (EEM) such as the one plotted at left. The emission
spectrum for 365-nm excitation was selected from the EEM for processing, while the remaining data was discarded. At each collection wavelength, the
fluorescence intensity of the measured spectrum was multiplied by the transmission of a filter used for multispectral imaging. These products were then
summed over all wavelengths at which filter data existed. A matrix multiplication carried out this process for each of eight emission filters. (Matrix
dimensions are given in brackets.) The result, plotted versus filter center wavelength, was an eight-point autofluorescence spectrum weighted for direct
comparison to data from the MSI.
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tissue), both shown in Fig. 4, were produced as follows. Single-
point measurements were first converted to eight-point spectra
as described previously. Only 455-nm measurement intensities
were included in the histogram because they typically repre-
sented the maximum of the spectrum. For the MSI data, a unique
region of interest (ROI) was first manually selected in all
images. (In order to lessen the effect of camera view angle
on image intensity, the ROIs were selected to include only tissue
approximately normal to the camera). Then, for each image, the
455-nm-filtered image intensity was averaged over the ROI
pixels. These average pixel intensities were used in constructing
the intensity histogram of MSI data.

Two methods of intensity equalizing the datasets were tested.
In the first method, a ratio of the means of the two intensity
distributions was used as a scale factor. For the second method,
a gamma distribution was fitted to each intensity histogram, and
the scale factor used was a ratio of the peak intensity of each
fitted gamma distribution.

2.8 Classification Method and Optimum Preparation
of Data

Linear discriminant analysis (LDA) is a statistical method useful
for predicting whether a measurement belongs to one class or
another, and to perform LDA, a set of training measurements
of known class is required. In our case the chosen measurement
classes were normal and cancer, and our library of single-point
spectra and associated gold-standard pathologies served as the
training data. In LDA, each measurement can be considered to
lie somewhere in an N-dimensional “measurement space.”
Training measurements define the distribution of each class
within the N-dimensional space. Given a measurement, LDA

calculates which class (and distribution) the measurement
most likely belongs to. In this study, LDA was performed by
using the “classify” function included in the MATLAB statistics
toolbox.

Before classification via LDA, it was desirable to reduce data
dimensionality, N. Smaller N reduces computational load and,
up to a point, increases the effectiveness of LDA. We applied
principal component analysis (PCA) to the data sets by calculat-
ing the covariance matrix of the data and decomposing it into
eigenvectors and eigenvalues. The highest scoring eigenvectors,
or principal components (PCs), represent a basis for a lower
dimensional space that measurements can be mapped to.
PCA maximizes the variance of the data that can be represented
by a given number of PCs.

The appropriate number of PCs to use for LDA was deter-
mined by performing jackknife analysis on the set of training
measurements and varying the number of PCs used for the mea-
surement space. One measurement at a time was removed from
the dataset and PCA applied to the remaining measurements.
LDA was then used to classify the removed measurement,
and the process was repeated for each measurement, always
replacing one measurement and removing another. Sensitivity
and specificity of the classification were calculated and used
to select an appropriate number of PCs and thus the final
data dimensionality. Jackknife analysis was similarly used to
determine whether classification would be more effective
using unnormalized or normalized data.

2.9 Diagnostic Tissue Mapping

Many choices exist for effectively displaying multispectral
image information. Each single specific wavelength image
can be observed in gray scale, or three specific wavelength
images may be observed together in a false-color red, green,
and blue (RGB) image. However, eight specific wavelength
images cannot be displayed in full spectral detail in a single
image of three-color channels.

The approach we took was to statistically analyze the spectral
data at each image pixel and then visually display the results in a
binary image. LDA was applied to classify the measured spec-
trum from each pixel in an image ROI. The LDA training set
consisted of a library of 211 single-point spectra. Prior to clas-
sification, PCs calculated from the training set were used to map
the test spectra to a new measurement space. For every multi-
spectral image set, a diagnostic tissue map was produced by
overlaying the ROI of a specific wavelength fluorescence
image with color-coded pixels. Pixels that classified as normal
were colored green, and pixels that classified as cancer were
colored red, as will be seen in later figures.

3 Results

3.1 Multispectral Imager Calibration

Correction factors for the absolute spectral response of the MSI
were calculated as described in Sec. 2.6. Results from measure-
ments on three relevant fluorescence standards are compared in
Fig. 5. The plotted data illustrates that longer wavelength bands
must be scaled up in intensity relative to images at shorter bands.
The system sensitivity therefore appears to be lowest at the
longest wavelengths imaged. Comparison of the three normal-
ized curves in Fig. 5 shows excellent agreement between the
fluorescence measurements of TPB and fluorescein except at

Fig. 4 Histograms of autofluorescence intensities at 455-nm filter center
wavelength, only including tissues confirmed normal by histopathol-
ogy. (a) Filter-weighted, previously collected single-point measure-
ments of ovarian biopsies. (b) Multispectral imaging measurements
(on whole ovaries) averaged over the pixels in the ROI of a single
ovary. Each histogram was fit to a gamma distribution. Datasets from
spectrofluorometer and MSI were intensity equalized based on statistics
of these measurements.

Renkoski, Hatch, and Utzinger: Wide-field spectral imaging of human ovary : : :

Journal of Biomedical Optics 036003-5 March 2012 • Vol. 17(3)



the longest wavelength emission filter. However, both TPB and
fluorescein fluoresce weakly at 600 nm, while rhodamine B
fluoresces significantly there. For this reason, the first seven
correction factors are selected from TPB results, but the final
correction factor is chosen to match the rhodamine B results.

3.2 Inter-Device Spectral Shape Correction

Using gross histopathology to group fluorescence spectra, we
compare the average MSI-collected spectra of normal, cancer,
and benign tissues, where the benign group includes both benign
neoplasm and endometriosis. Each average spectrum is calcu-
lated by taking the mean of each spectrum from all ROI pixels
of each image and then averaging over all the tissue images of
the same histopathology. Results are shown in Fig. 6(a) with the
average spectra from the single-point device shown in Fig. 6(b)
for reference. In both the imaging study and the single-point
study, the average fluorescence intensity from normal ovarian
tissue is much higher than from cancer tissue. In the imaging
study, the average benign fluorescence was highest of the
three measurement groups. Although inconsistent with the sin-
gle-point study result, this finding agrees with that of Brewer et
al.,41 and we note that the benign group of measurements was
small in the single-point study.

The average normal spectrum acquired with the MSI
[Fig. 6(a)] displays a different shape compared to the single-
point device spectrum [Fig. 6(b)]. The fluorescence peak is
red shifted, and the relative intensities at the longest wave-
lengths are enhanced. Although single-point measurements
were collected from a separate set of normal ovaries, we expect
the average fluorescence properties of the tissues to be very
similar. Gebhart et al.43 published a comparative study of sin-
gle-point and spectral imaging fluorescence measurements
from tissue phantoms and observed redshifted spectra; the effect
they observed was, however, less pronounced. Dividing the
average spectra of the two devices yields monotonic functions,
shown in Fig. 6(c), which are similar for spectra of both normal
and cancer tissues. The dissimilar device spectra could therefore
stem from differences in the illumination-collection geometries

of the two systems. To equalize the two datasets prior to clas-
sification, all the MSI spectra were shape-adjusted by multipli-
cation with the normal curve shown in Fig. 6(c). Henceforth, we
refer to them as shape-corrected spectra.

3.3 Correction for Spatial Variation of Tissue Optical
Properties

We observed that the presence of blood or increased vascularity
on or near the ovarian surface seemed to reduce measured
autofluorescence and to interfere with classification. Tissue
optical properties (absorption and scattering) affect both the
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Fig. 6 (a) Average calibrated fluorescence spectra from normal, cancer,
and benign ovaries measured with the multispectral imager (MSI).
(b) Average calibrated fluorescence spectra from normal, cancer, and
benign ovarian biopsies measured as part of a previous study using sin-
gle-point spectroscopy. All measurements were captured ex vivo with
365-nm excitation. (c) Results of dividing the average spectra collected
by each device when observing normal tissue and when observing a
cancer tissue. These data have each been normalized and fitted with
a second-order curve. The curve from normal tissue is used to correct
the shape of spectra captured by the MSI.
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propagation of excitation light into the tissue and the ability of
emitted autofluorescence to escape the tissue for collection by
the imaging system. To correct for the absorption effects of
blood and hypervascularity, we divided the fluorescence images
by a green-channel crossed-polarization reflectance image. Cor-
rection using blue and red reflectance images was attempted as
well but produced less favorable results. The simple correction
method we use has similarity to the one employed by Zeng,44

who divided skin fluorescence spectra by reflectance measure-
ments at corresponding wavelengths as a first-order correction
for tissue absorption and scattering effects. Our correction is
also similar to the one used by Qu,45 who divided tissue fluor-
escence images by crossed polarization reflectance images
captured at the excitation wavelength to correct for tissue
absorption and geometrical effects. To avoid disturbing the aver-
age intensity level of the fluorescence images, we normalized
each reflectance image to have an average value of one over
the ROI prior to the division.

3.4 Optimum Preparation of Data for Classification

Jackknife analysis was performed on the training set spectra
(single-point probe spectra) to determine whether classification
of normalized spectra or unnormalized spectra would be more
effective. The sensitivity realized using unnormalized data
(100%) was much higher than when using data normalized
by area (56%). Specificity realized using unnormalized data
(71.5%) was comparable to that using data normalized by
area (73.1%). Figure 7 illustrates the advantage of using
unnormalized data. The unnormalized data display an obvious
trend of lower-intensity cancer autofluorescence measurements
and higher-intensity normal autofluorescence measurements.
Normalizing the training data spectra by area emphasizes spec-
tral shape; however, critical intensity information from measure-
ment to measurement is lost in the process.

Figure 8 shows the two highest-scoring eigenvectors from
PCA of the single-point training spectra. The first eigenvector,
or principal component (PC), resembles the average eight-point
spectrum of the training set. The second eigenvector allows
lower (violet) or higher (blue, green, red) wavelength bands
to be weighted more heavily. These two eigenvectors combined
to represent 99.6% of the variance of the training data, which
suggests that two PCs sufficiently represent the data.

To confirm the appropriate number of PCs for representation
of the measurements, additional jackknife analysis was per-
formed on the training set, and the results are displayed in

Table 1. The combined sensitivity and specificity of classifica-
tion was maximized when three PCs were used; however, two
PCs were chosen for measurement representation because the
lower number of PCs increases the model robustness.

3.5 Tissue Classification (Mapping) Via LDA

Autofluorescence images from the MSI were preprocessed, cali-
brated, and intensity equalized to the training set measurements
as described previously. The eight-point spectra were then
shape-corrected to match the training set spectra. Component
loadings of both the test set and training set spectra were
calculated based on PCA of the training set spectra (Fig. 8).
Figure 9 shows the two classes of training set measurements
plotted in the space of training set PC 1 and PC 2. The diagonal
line designates the boundary for classifying a test measurement
into the normal or cancer class. Sequentially, LDA was used to
classify each ROI pixel of each tissue image into one of these
two training set classes.

Figure 10 displays classification results from a single normal
ovary with a bumpy surface. The RGB reflectance image
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Fig. 7 (a) Filter-weighted unnormalized training data measurements show a trend of lower autofluorescence intensity in histopathology-confirmed
cancerous biopsies. (b) Filter-weighted training data measurements normalized by area under curve show no obvious spectral feature distinguishing
normal and cancerous biopsies.
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Fig. 8 Results of principal component analysis (PCA). The first eigen-
vector, or principal component (PC), represents the vast majority of
the variance in the training dataset, and its shape closely resembles
the average spectrum. These facts indicate that the dataset can be
classified fairly well by considering only the intensity of a measurement.
The second PC accounts for a small fraction of the dataset variance and
can be used to emphasize portions of the spectrum lower or higher than
455 nm.
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[Fig. 10(a)] shows abundant vasculature near the top and left of
the image ROI, especially in the creases of the uneven tissue.
Plots on the right side of the figure show distributions of the
MSI data PC loadings (including only pixel data from inside
the ROI) laid over distributions of the normal training set
data PC loadings. Figure 10(b) shows PC loadings representing
MSI spectra that are uncorrected for spectral shape as discussed
in Sec. 3.2. These data do not overlap well with the training set.
This is consistent with the previous observation that the training
and test sets produced differently shaped average spectra. The
color-coded classification map [Fig. 10(c)] shows that after
spectral shape correction, 76% of pixels classify like normal tis-
sue
(pixels shown in green) and 24% like cancer tissue (pixels
shown in red). Shape correction greatly improved overlap of
the image data with the training data [Fig. 10(d)], and we
observed a similar effect for spectra from other samples.
When applying the correction for spatial variation in tissue opti-
cal properties, improved classification results were achieved
[Fig. 10(e)]. Figure 10(f) shows that division of the shape-
corrected fluorescence data by green reflectance data has shifted
many of the ROI pixels from the cancer classification region at
left of the decision boundary to the normal region at right. The
total area covered by the cloud of data points is also reduced.

Presented in Fig. 11 are the classification results from
imaging of a single cancer ovary. As seen in the reflectance
image [Fig. 11(a)], this ovary had grown to an unusual size
exceeding the camera field of view. Distributions of the
image data PC loadings [Fig. 11(b), 11(d), and 11(f)] show
that this ovary could be easily classified as cancer as image
data lies clearly on the cancer side of the linear decision bound-
ary. Shape correction and application of reflectance data both
reduced classification uncertainty by moving the data distribu-
tion further left of the boundary. Maps of the classification
results in Fig. 11(c) and 11(e) confirm complete success in iden-
tifying the ovary as cancer. It is seen also that, for this
particular ovary image, correction with reflectance data was
unnecessary.

An example of an image of a normal ovary that was difficult to
classify with LDA is given in Fig. 12. This ovary had a significant
amount of adipose tissue on its surface. The classification based
only on shape-corrected autofluorescence [Fig. 12(b)] gives
mixed results. One can see that regions with more blood tend
to misclassify. Figure 12(c) shows that dividing by the green
reflectance image generally improves the classification in
areas with more blood but leads to misclassification in adipose
areas. This shows a limitation of our simple method of incorpor-
ating green reflectance data. Dealingwith adipose tissue seems to
require an algorithm that considers red and/or blue reflectance as
well. Presence of adipose tissue on the ovaries appears uncom-
mon, however, as it was only encountered for one set of ovaries in
this study.

3.6 Performance of Classification Mapping

As a measure of the effectiveness of the MSI and classification
scheme in performing ex vivo ovary diagnosis, we designed
criteria to allow calculation of sensitivity and specificity of
our diagnostic algorithm on the multispectral data. If 90% or
more of the ROI pixels in an ovary image classified normal,
we called the result a normal classification of the ovary. Vice
versa, if 90% or more of the ROI pixels in an ovary image
classified as cancer, we called this a cancer classification of
the ovary. For any other percentage classification of the pixels
in an ROI, the classification was called “indeterminate.”

One hundred four images of 26 ovaries were classified for the
first part of this study. From histopathology, 92 of these images
(of 24 ovaries) were known from gross pathology to be normal,
while 12 images (of two ovaries) were known to be cancer. The
results of classification via LDA are presented in Table 2.
Indeterminate classifications were treated the same as cancer
classifications when calculating specificity and sensitivity. In
all cases, intensity equalization was performed by scaling train-
ing set intensities using the ratio of mean 455-nm fluorescence
of all normal training set measurements to normal test set mea-
surements. The alternate method of intensity equalization based
on the ratio of peak locations of fitted gamma distributions
produced 30% lower specificity results and was abandoned.
Jackknife analysis on the training data, Table 2, column one,
represents an expectation of the highest sensitivity and specifi-
city that can be achieved, as jackknife analysis on training data
typically outperforms classification of a test set.

As shown in Table 2, sensitivity of 100% was achieved in all
cases. We note, however, that two of 12 cancer images classified
as indeterminant when data was not reflectance normalized, and
this number improved to just one of 12 images when fluores-
cence measurements were divided by green reflectance.

Table 1 Results of jackknife analysis on the training data using
different numbers of PCs.

Principal
comp.’s

Sensitivity
(%)

Specificity
(%)

Sensitivity
þspecificity

1 100 65.6 165.6

2 100 71.5 171.5

3 100 74.7 174.7

4 100 71.5 171.5

5 92 74.7 166.7

PCs ¼ principal components.
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Fig. 9 Training set measurements, plotted in the space of the first two
principal components (PCs). Normal and cancer groups overlap.
Diagonal line is the decision boundary used for classification of test
group measurements. Generally, PC #1 accounts for variations in inten-
sity of measured spectra, and PC #2 accounts for differences in shape of
measured spectra.
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Although the number of cancerous ovaries in the study was
small, the high sensitivity of the method is supported by the
100% sensitivity realized in the jackknife analysis of the training
data, which included a larger number of cancerous measure-
ments. Specificity when using the shape-corrected fluorescence
data was considerably lower than predicted by jackknife analy-
sis (51.1% versus 71.5%); however, dividing the fluorescence
data by green reflectance improved the specificity to 68.5%,
which is comparable to the jackknife analysis. To judge the
benefit of imaging at multiple emission wavelength bands,
we also performed classifications using single fluorescence
bands. One such band chosen to classify with was the single
filter wavelength 455 nm, which represented the peak of the
measured eight-point fluorescence spectrum. We also tested
classification with a wide fluorescence emission band formed
by summing all eight points of the measured spectrum. Both
of these simple cases produced reduced specificity, justifying
the use of PCA and multispectral measurements.

3.7 Excluded Measurements and Benign Classification
Results

Images of 14 of 49 resected ovaries were necessarily excluded
from classification. Five were excluded because of extensive
external blood on the ovarian surface. Three were excluded
because of dye present from another study. Three were excluded
because of device malfunction or improper setting. Two were
excluded because, although cancerous, the ovaries had been
invaded by a cancer that originated elsewhere in the body.
Finally, one ovary image set was excluded because tumor
growth was so extensive that no ovary remnant could be
identified.

Table 2 classification results include only the normal and
cancer ovaries, or 26 of the 35 ovaries analyzed. Nine ovaries
of a benign neoplasm or endometriosis pathology designation
were also imaged. An identical classification of these nine ovar-
ies into normal or cancer classes was performed using the same
training data. All 10 benign neoplasm ovary images classified as

Fig. 10 (a) Crossed-polarization reflectance image of a normal ovary with ROI outlined. (b), (d), and (f) Multispectral autofluorescence image data
plotted in two-PC space. Measurements at each ROI pixel of the ovary shown in (a) are plotted over normal measurements of the training set. Diagonal
line represents a decision boundary for classification, with the upper left region corresponding to a cancer classification and lower right to a normal
classification. (c) and (e) Tissue classification maps superimposed on fluorescence images of the same ovary. Green ROI pixels indicate normal clas-
sification. Red pixels indicate cancer classification. (b) Before spectral shape correction, pixel measurements do not overlap well with the training set.
(c) and (d) After spectral shape correction, the data overlap well, but only 76% of pixels classify as normal. (e) and (f) After division by green channel
reflectance, more than 97% of pixels classify as normal.
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normal, whereas the 30 images of endometriosis ovaries were
evenly split with 10 normal classifications, nine cancer, and
11 indeterminate.

4 Discussion and Conclusions
We have demonstrated that previously collected single-point
autofluorescence measurements of tissue biopsies can be used
in combination with newly acquired multispectral images of
fresh surgical specimens to effectively diagnose macroscopic
areas of tissue. Although single-point fluorescence data were
collected in the form of a high-resolution EEM, we transformed
them for comparison with eight-point fluorescence spectra cap-
tured by the MSI. We created pixel-by-pixel diagnostic maps of
the imaged tissue, incorporating the independent, single-point
measurements of similar tissues as training data for LDA clas-
sification of MSI-measured spectra.

Spectral shape correction was required for effective classifi-
cation because, although both devices were calibrated for their
individual spectral responses and their measurement intensities
equalized, the average MSI-collected and probe-collected spec-
tra were different [Fig. 6(a) and 6(b)]. Specifically, the MSI
appeared to collect lower relative fluorescence in the violet
emission region (especially 420 nm) and to emphasize the long-
est emission wavelengths (>500 nm). The peak of the average
eight-point spectrum was redshifted by one point (from 455 to
485 nm). Redshift of imager-collected spectra relative to probe-
collected spectra has been reported by others43,46 and is believed
to occur due to differences in the illumination-collection geome-
tries of spectral imager and spectroscopic probe. Gebhart et al.43

determined that the illumination-collection geometry of their
imager, on average, led to collected photons with increased tis-
sue interaction compared to those collected by their probe sys-
tem. We show here that simple shape correction of imaging

Fig. 11 (a) Crossed-polarization reflectance image of a large cancer ovary with ROI outlined. (b), (d), and (f) Multispectral autofluorescence image data
plotted in two-PC space. Measurements at each ROI pixel of the ovary shown in (a) are plotted over normal measurements of the training set. Diagonal
line represents a decision boundary for classification, with the upper left region corresponding to a cancer classification and lower right to a normal
classification. (c) and (e) Tissue classification maps superimposed on fluorescence images of the same ovary. Green ROI pixels indicate normal clas-
sification. Red pixels indicate cancer classification. (b) Before spectral shape correction, pixel measurements of this ovary already fall on the cancer side
of the decision boundary. (c) and (d) After spectral shape correction, 100% of pixels classify as cancer. (e) and (f) After division by green channel
reflectance, pixel measurements lie farther to the cancer side of the decision boundary.
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spectra for one-to-one comparison with single-point spectra pro-
duces good agreement for classification.

Ovary autofluorescence images were divided by normal-
ized, crossed-polarization, green reflectance band images to
compensate for spatial variations in the tissue optical properties
caused by hypervascular areas and surface blood. The division-
by-reflectance method is similar to reported corrections of tis-
sue fluorescence spectra44,47 and images.45,48 During initial
classifications, without this correction, very low fluorescence
was measured from reddened tissue areas and resulted in mis-
classification of those portions of normal ovaries as cancer.
Since we required 90% of image ROI pixels to classify cor-
rectly for a successful overall classification of the ovary, a num-
ber of false positives resulted without the correction, and
specificity was 51.1%. Applying the division-by-reflectance
correction improved the specificity to 68.5% without changing
the sensitivity (100%) and placed classification performance
on the level predicted by training set jackknife analy-
sis (100%∕71.5%).

It should be noted that no reflectance measurements existed
for the single-point autofluorescence training set, and thus it was
not possible to correct the training data in the same manner as

the MSI data. We justify classification of the reflectance-mod-
ified test set using the unmodified training set by noting that
reflectance images were individually normalized (given mean
pixel value of one) before the division, maintaining the fluores-
cence images’ average intensities. Surface blood and hypervas-
cular tissue areas also likely had less influence on the training set
data, which were collected by a probe interrogating small
(< 1 mmdiameter), carefully selected tissue areas. As a result
of the normalization of the reflectance images used for correc-
tion, tissue optical property spatial variations within particular
images were compensated, but image-to-image and ovary-to-
ovary tissue optical property variations were not.

Classification of ovarian tissue images based on 365-nm
excitation autofluorescence alone does not appear to be suffi-
cient as a technique for diagnosis of ovarian cancer because
although sensitivity of the technique was high, specificity
was low (51.1%). Blood in the ROI appeared to be the major
confounder in about half of the normal ovary images that mis-
classified. The cause of the other half of misclassifications is
unclear but may be due to general variation of tissue optical
properties. Correction by green reflectance data led to a more
useful specificity of 68.5%. Still higher specificity is desired

Fig. 12 (a) Crossed-polarization reflectance image of a normal ovary with ROI outlined. Adipose tissue is prevalent on the ovary. (b) and (c) Tissue
classificationmaps over the ROI of same ovary. Green ROI pixels indicate normal classification. Red pixels indicate cancer classification. Classification
using shape-corrected fluorescence data is poor. Classification improves with incorporation of green reflectance data, but areas high in adipose tissue
tend to misclassify. (d) and (e) Multispectral autofluorescence image data plotted in two-PC space. Pixel measurements fall on both sides of the decision
boundary.

Table 2 Classification results using linear discriminant analysis.

Single-point training spectra Fluorescence Fluorescence/green reflectance Summed fluorescence 455 nm fluor. only

Sensitivity % 100a 100b 100b 100b 100b

Specificity % 71.5 51.1 68.5 38.0 31.5

aBased on 211 single-point measurements; 25 measurements of 10 cancerous ovaries and 186 measurements of 65 normal ovaries (typically three per
biopsy).
bBased 104 images of 26 ovaries; 12 images of two cancerous ovaries and 92 images of 24 normal ovaries (typically three to five images per ovary).
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and might be obtainable in an imager using more than one exci-
tation wavelength. Spectroscopic studies of the cervix49 and
ovary50 have demonstrated higher specificities than obtained
here, but these incorporated multiple excitation wavelengths
to target various endogenous fluorophores. A second alternative
to combat the problems associated with blood and tissue optical
property variation would be to use FLIM, which is less sensitive
to these confounders. Such a system, however, would be more
complex, more expensive, and require longer acquisition times.

In this study we have found that benign neoplasm ovaries
could be correctly classified as nonmalignant with a normal ver-
sus cancer binary classification. This result makes the diagnostic
findings on normal and cancer ovaries more meaningful. Endo-
metriosis ovaries, however, are frequently misclassified as
malignant in such a binary test. Presumably this result stems
from discoloration of the ovary and additional absorption of
fluorescence with the presence of additional near-surface vascu-
lature. Our approach of correcting for tissue absorption differ-
ences with division by green reflectance data was insufficient to
classify endometriosis ovary images as nonmalignant in the
binary classification.

All of the measurements used in this study, both single-point
and from imaging, have been performed ex vivo. In vivo ovary
measurements4,51 as well as ex vivo imaging41,52 have been
reported previously by our research group. A long-term goal
of the authors is to integrate this technology into laparoscopy
for in vivo diagnostics and real-time cancer screening of indivi-
duals at high risk for developing ovarian cancer. Real-time
versions of the diagnostic device will not use manual selection
of an ROI, but rather classify tissue over a predefined portion of
the field of view. Classification maps would be acquired at
discretion of the surgeon because of the need to expose tissue
to ultraviolet light. If high sensitivity of this technique is con-
firmed with in vivo studies, the optimal time point of pro-
phylactic oophorectomy could be determined. The described
method also would appear to be useful in tumor delineation
or selective oophorectomy (only one ovary removed). Addi-
tional studies including coordinated sectioning and histopathol-
ogy would further determine the value of adding multispectral
capabilities to endoscopy.
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